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Abstract

We examine the performance of 2,790 private equity (PE) funds incepted during 1979-

2008 using Stochastic Discount Factors (SDFs) implied by the two leading consumption-

based asset pricing models (CBAPMs)�external habit and long-run risks�as their

assumptions appear consistent with investment objectives of avid PE investors. In

contrast to CAPM-based inference, venture funds did not destroy value under these

CBAPMs in post-2000 vintages and may even have outperformed buyouts and general-

ists in the full sample. We �nd that 2007-08 venture vintages provide a better hedge for

post-crises consumption shocks than other types of PE, and that the temporal variation

in PE excess returns is signi�cantly smaller under CBAPMs. Our contribution is also

methodological. We extend the realized risk premia matching insight of Korteweg and

Nagel (2016) to a more general class of SDFs, namely portfolio-speci�c discount factors

that re�ect non-tradeable assets unspanned by standard benchmarks. To this end, we

propose a more e�cient estimation of SDF parameters in this context and develop a

�nite sample bias correction for NPV-based inference with long-duration assets.
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Historically, pension funds and endowments have been the cornerstone investors in private

equity (PE) funds, yet the standard performance metrics used to evaluate these funds may

not always account for the speci�c investment objectives of these investors. Beginning with

Ljungqvist and Richardson (2003) and Cochrane (2005), a growing literature studies the

risk and return characteristics of private capital investments within the context of CAPM

or public market-based factor models.1 While these models are natural benchmarks that

span relevant risk, few endowment or pension funds specify maximizing the excess return

over a public market benchmark as their policy objective. Rather, their mandates focus

on hedging consumption (and/or production) risks for various bene�ciaries. Furthermore,

these bene�ciaries e�ectively represent non-tradeable assets and liabilities that are not nec-

essarily spanned by publicly traded assets (Gârleanu and Panageas, 2017). Recognizing this

mismatch, Cejnek, Franz, and Stoughton (2015) argue that recursive preferences, such as

those in Epstein and Zin (1989), are more appropriate for modeling endowment funds where

smooth expenditure policies are paramount due to high operating leverage and volatile dona-

tions. In this paper, we apply time-inseparable preferences and modern consumption-based

asset pricing models to evaluate the performance of a large sample of PE funds relative to

these non-tradeable discount factors. We �nd that the conclusions drawn about PE fund

performance change dramatically under these models.

While di�erent inference on PE fund returns does not necessarily validate our contribu-

tion, we point to the rich literature on CBAPMs being used to price public assets beginning

with Mehra and Prescott (1985). We posit that CBAPMs may convey the variation in

the marginal utility (for investment returns) of pension plans and university endowments

complementary to that by the publicly traded factors. Moreover, we examine the stated

investment policies and performance reports of these institutions to assess whether the pref-

erences of endowments and pension plans map closely to those of investors with risk-sensitive

preferences and near in�nite investment horizons.2 In addition to supporting the preference

for early resolution of uncertainty regarding the amount of funding available in the future,

most documents explicitly acknowledge the limitations in forecasting current economic and

market trends. Furthermore, Bidder and Dew-Becker (2016) show that in settings where in-

vestors are unsure about the dynamics of the economy, assets are priced as though long-run

risks are present.

Speci�cally, we consider the long-run risk (LRR) model of Bansal and Yaron (2004) and

1See Kaplan and Sensoy (2015) for a survey, Sorensen and Jagannathan (2015) and Korteweg and Nagel
(2016) or a power-uliity investor perspective, and Gupta and Van Nieuwerburgh (2019) for the mimicking
portfolio and multiasset discount factor.

2For example, Dew-Becker and Giglio (2016) show that investors with Epstein-Zinn preferences heavily
weight low frequency trends lasting a century or longer.

1



the external habit model of Campbell and Cochrane (1999). To estimate the time series

of the stochastic discount factors (SDFs) implied by these models, we follow Colacito and

Croce (2011) and Ghosh, Julliard, and Taylor (2016) by extracting the series of consumption

growth innovations from a panel of macroeconomic and �nancial variables. We compare

the temporal variation of the model-implied SDF series to the real growth in gifts to U.S.

university endowments. We �nd a robust time series correlation between the two series even

after controlling for public market returns. A similar statistical relation is present between

the CBAPM SDFs and average contributions growth to U.S. public pension plans. This

suggests that assets that deliver positive NPV under CBAPM SDFs indeed help hedge the

risks of those non-tradeable assets. We then use these SDFs to evaluate the cash �ows of PE

funds incepted between 1979 and 2008 and compare the resulting NPVs with those obtained

from the CAPM. This sample of cash �ows is net of all fees, extends through December 2018,

and includes 1,281 venture and 1,510 other private equity funds from the Burgiss database.

The natural interpretation for an SDF is a ratio of marginal utilities of consumption across

di�erent scenarios (e.g., see Cochrane, 2009). As such, while the SDF in CAPM is inversely

proportional to the market return realization, it is decreasing in consumption growth in

CBAPMs.

Our key �ndings are as follows. First, we �nd that the growth in capital committed to

PE funds in general (and to buyouts especially) took place during the period when �nancial

asset returns have provided an extraordinary good hedge to the consumption shocks.

Second, unlike under a power utility CAPM, post-2000 venture funds did not destroy

value according to both CBAPMs, and performed better than buyout and generalists in the

full sample (1979�2008 vintages). More speci�cally, venture funds incepted during 2007�

2008 have produced signi�cantly positive NPVs of 15 to 30 cents per dollar of committed

capital, which stands in sharp contrast with NPV losses of 5 to 60 cents delivered by other

PE funds. These results remain after removing the SDF trend e�ects discussed above and

the confounding factors stemming from the slow resolution rate observed for many funds

incepted after 2004.

Third, we document a notably lower variation of PE fund NPVs across vintage years

under CBAPMs, and the LRR model especially, in comparison to that under CAPMs. This

supports the conjecture that CBAPMs better capture the time variation in risk premia in

private investment markets.

Broadly, our analysis contributes to the literature by shedding light on the performance

of a comprehensive sample of PE funds through the lens of modern macro-�nance models.

Previous studies have considered the (conditional) CAPM and tradeable factor models for

risk-adjusting PE returns (see, inter alia, Korteweg and Sorensen, 2010; Franzoni, Nowak,
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and Phalippou, 2012; Robinson and Sensoy, 2013; Ang, Chen, Goetzmann, and Phalippou,

2017; Korteweg and Nagel, 2016; Gupta and Van Nieuwerburgh, 2019) while prior empirical

evidence on Habit and LRR models has been con�ned to publicly traded assets (see, e.g.,

Constantinides and Ghosh, 2011; Breeden, Litzenberger, and Jia, 2015). Our results also

contribute to the discussion on what, why, and how institutional investors invest in PE.3

Our �ndings are consistent with preference for growth over value by investors with recursive

utility under ICAPM as shown in Campbell, Giglio, Polk, and Turley (2018).

Our contribution is also methodological. We show that cash �ow NPV-based measures

of performance for long-duration investment vehicles like PE funds are biased relative to

per-period abnormal return estimates. This bias is related to both the compounding of id-

iosyncratic returns and the short e�ective time series of PE fund returns stemming from the

high degree of overlap in fund lives. Adjusting for this bias is necessary for correct inference

on PE fund performance and interpretation in the context of the asset pricing model under

consideration. Our simulations suggest that this bias (i) can be quite large, (ii) is primar-

ily of �nite sample nature, but (iii) is present even asymptotically under certain realistic

conditions.4 Among these conditions are measurement errors and/or temporal dependencies

which are endemic to the type of SDFs considered in this study. We develop two complemen-

tary bootstrap-based methods to correct for the compounding error bias and propose a more

e�cient GMM procedure to estimate the SDF parameters relatively to the GPME method

of Korteweg and Nagel (2016). Speci�cally, we use standard time series overidenti�ed GMM

on periodic quarterly returns of publicly traded benchmarks and account for di�erences in

PE activity levels across time periods using the instrumented portfolio approach (Cochrane,

1996). This method adopts the realized risk premia matching insight of Korteweg and Nagel

(2016) while avoiding some of its drawbacks which hinder the application of the GPME

method in short samples or when the SDF is not a tradeable portfolio.

The paper proceeds by �rst outlining the CBAPMs and evaluating PE fund performance

relative to the canonical versions of these models from the prior literature. We then discuss

re�nements to these baseline results.
3 See, e.g., Lerner, Schoar, and Wongsunwai 2007; Lucas and Zeldes 2009; Bernstein, Lerner, and Schoar

2013; Ang, Papanikolaou, and Wester�eld 2014; Gilbert and Hrdlicka 2015; Robinson and Sensoy 2016.
4 While acknowledging that these conditions may also indicate the model misspeci�cations (see, e.g.,

Chernov, Lochstoer, and Lundeby, 2018), we emphasize that models' evaluation is outside the scope of our
study while some non-tradeable assets can imply SDFs that violate these standard conditions.
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I. Models

The models we consider In this section, we outline the models that we use to evaluate

performance of PE funds. Speci�cally, we utilize a power-utility CAPM, the long-run risk

model of Bansal and Yaron (2004), and the external habit model of Campbell and Cochrane

(1999). We rely on the SDF representation of the extant models, which is generally equivalent

to the beta method where the asset risk-factor exposure are explicitly estimated (Jagannathan

and Wang, 2002).

A. CAPM

PME as logU CAPM implementation Sorensen and Jagannathan (2015) show an

equivalence between the PME metric of Kaplan and Schoar (2005) and the SDF implied

by the log-utility CAPM of Rubinstein (1976). In this model, the state of the world is

summarized by the return on the public equity market portfolio. Speci�cally, the log SDF

is equal to

mt+1 = −rm,t+1 (1)

where rm,t+1 is the log return on the public equity market portfolio.

GPME as a tool a�ne factors in general Korteweg and Nagel (2016) consider a

generalization of the PME, in which the state of the world is summarized by a vector of

factor returns, ft+1. The log SDF is then exponentially a�ne in these factors such that

mt+1 = a− bft+1. (2)

CAPM's implementation of power-utility CAPM We focus on the case where

the market return is the only factor and the SDF mirrors the one implied by a power-utility

CAPM. Speci�cally, the log SDF is given by

mt+1 = a− γrm,t+1 (3)

where rm,t+1 is the log return on the public equity market portfolio, a governs the uncondi-

tional mean of the log SDF, and γ is the coe�cient of relative risk aversion. PME is then a

special case of GPME where a = 0 and γ = 1. Pricing assets in this framework requires us to

specify a series of public equity market returns, {rm}t∈T , and a parameter vector, θ = (a, γ).
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B. Long-run Risks model

LRR model underpinnings and the SDF form The long-run risk model of Bansal

and Yaron (2004) couples a small, but persistent, shock in the conditional expectation of

consumption growth with the non-time separable utility in the form of Epstein and Zin

(1989) preferences. These features form an SDF more volatile than the observed consumption

growth. Speci�cally, consumption growth is modeled as

∆ct+1 = µ+ xt + σηt+1

xt+1 = ρxt + ψeσet+1,
(4)

where et+1, ηt+1 are independent mean-zero shocks with unit unit variance, ∆ct is real log

growth in consumption, and xt is the persistent long-run risk factor. In this model, the log

SDF is equal to

mt+1 = m̄− 1/ψ · xt − γσηt+1 −
(
γ − 1/ψ

)
/
(
1− ρκc

)
κcψeσet+1

= Et[mt+1]− γ · σηt+1 − f(γ) · ψeσet+1 ,
(5)

where m̄ is the unconditional mean of the log SDF, ψ is the intertemporal elasticity of

substitution, γ is the coe�cient of relative risk aversion, and κc is the coe�cient in the

Campbell and Shiller (1988) approximation detailed in Bansal and Yaron (2004). In order

to price assets with the SDF implied by this model, we need to specify a series of innovations

to the consumption growth process, {η, e}t∈T estimated from the data, and a parameter

vector, θ = (m̄, σ, ψe, ρ, ψ, γ, κc).

Why LRR and PE One of the characteristic features of investors in Bansal and Yaron

model is aversion to uncertainty about long-term future consumption path (as captured by

ψ > 1) is appears consistent with the mandates and preferences that some avid PE fund

investors exhibit. For example, Harvard University intends its endowment �to ensure that it

has the �nancial resources to con�dently maintain and expand its preeminence in teaching,

learning and research for future generations.� While CalPERS Investment Beliefs state

�ensuring the ability to pay promised bene�ts by maintaining an adequate funding status...

consider[ing] the impact of its actions on future generations of members and taxpayers...

[taking] advantage of factors that materialize slowly such as demographic trends.�

C. External Habit model

Habit model underpinnings and SDF form The external habit model of Campbell

and Cochrane (1999) relies on the multiplicative e�ect of a surplus consumption ratio, St,
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to lever consumption volatility:

∆ct+1 = g + ut+1

st+1 = (1− φ)s̄+ φst + λ(st)ut+1 ,
(6)

where ∆ct is real log growth in consumption, subject to temporarily independent socks ut; st
is the log surplus consumption ratio; λ(st) = 1

s̄

√
1− 2(st − s̄)−1 when s ≤ smax, 0 elsewhere,

S̄ = σ
√

γ
1−φ−b/γ is the steady-state surplus-consumption ratio, and smax = s̄ + 1−S̄2

2
is the

upper bound of the log surplus-consumption ratio. In this model, the log SDF is equal to

mt+1 = m̄− γ(φ− 1)st − γ
(
1 + λ(st)

)
ut+1

= Et[mt+1]− γ
(
1 + λ(st)

)
ut+1 ,

(7)

where m̄ is the unconditional mean of the log SDF and γ is the coe�cient of relative risk

aversion. As before in order to price assets with the SDF implied by this model, we re-

quire a series of innovations to consumption growth, {u}t∈T estimated from the data, and a

parameter vector, θ = (m̄, γ, φ, b, σ).

Why Habit and PE One of the characteristic features of investors in Campbell and

Cochrane model is a preference for consumption smoothing. This also appears consistent

with the mandates and preferences that some avid PE fund investors exhibit. For example,

the Spending Policy of Yale University endowment �balances the competing objectives of

providing a stable �ow of income to the operating budget and protecting the real value of

the Endowment over time.�

II. Data

In this section, we describe our sample of PE fund cash �ows and the construction of

the SDF series we use to evaluate PE fund performance. We then give suggestive evidence

on empirical relevance of CBAPM SDFs for some core PE fund investors such as university

endowments and pension plans.

A. PE funds

Burgiss Our PE dataset is from Burgiss, which obtains cash �ow data from investors

(limited partners) in PE funds and cross-validates these data across several investors. Harris,

Jenkinson, and Kaplan (2014) and Brown, Harris, Jenkinson, Kaplan, and Robinson (2015)

�nd that this dataset is representative of the universe of PE funds.
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Our Burgiss sample Our sample contains cash �ows and valuation histories for 1,281

venture, 1,105 buyout, and 405 generalist PE funds.5 The cash �ows span the period from Q3

1979 to Q4 2018 and represent a complete transaction history between each PE fund and its

investors. We de�ne contributions as cash �ows from investors to PE funds and distributions

as cash �ows from the PE funds back to investors. Contributions include management fees,

while distributions are net of fees.

Summary stats for funds Panel A of Table I reports fund counts and summary statis-

tics for our sample. In this table, the money multiple (also called Total Value to Paid-In

capital or TVPI) is computed as a sum of the last net asset value reported (NAV) and the

distributions repaid to investors up to that date divided by the sum of contributions received

from investors over the life of each fund. The table shows signi�cant variation in PE fund

returns, both over time and across funds. The peaks in performance (unadjusted for risk)

correspond to the mid 1990s vintages for venture funds and the late 1980s and early 2000s

for buyouts and generalists.

Discussion of the fund resolution rate and reported NAVs. The �nal column,

labeled lNAV r/
∑
Dr, presents a measure of fund resolution rates. Speci�cally, this column

presents the fund size-weighted average ratio between the last reported NAV and the sum of

distributions preceding it. Superscript r denotes that both series are adjusted for in�ation�

i.e., �real�. For the majority of our analysis, we use real cash �ows since the consumption-

based SDF series are de�ned in real terms. Hence, this measure of fund resolution rate will

tend to be somewhat more conservative than those based on nominal cash �ows by reducing

the (fund-speci�c) period-T value of distributions that precede the latest NAVs. Nonetheless,

we see that funds incepted before 2002 are either fully resolved or report NAVs that are less

than 10% of total distributions on average.6 However after the 2003 vintage, the resolution

rate drops dramatically, especially for venture funds.

Aggregate NAV history, spotlight on venture, reasoning to stop at 2008 vin-

tage Figure 1 plots the history of aggregate net asset values reported by the funds in our

sample. NAVs peaked around 2012 at over $800bln as the investment period for 2007�08

vintages lapsed and the net cash �ow back to investors became positive. As of the end

of 2018, venture funds NAVs are approximately one-third of the total at $59bln, while the
5 Following the classi�cation scheme of the 2018 Burgiss Manager Universe dataset, we exclude funds

that invest primarily in debt securities, 'Real Assets' (including Real Estate), as well as funds that are
'Not elsewhere classi�ed' and 'Unknown' according to asset_class1-�eld. In addition to the funds classi�ed
as 'Generalist' as per asset_class1-�eld, we reclassify as generalists those funds that have the following
asset_class1- and asset_class2-�eld values: 'Equity' -'Expansion Capital', 'Equity' -'Unknown', and 'Eq-

uity' -'Generalist'. We only include funds that by 2019 made at least one distribution to their investors.
6 In unreported analysis, we verify that levels are similar on an equal-weighted basis and, in most cases,

re�ective of the 15-year life limit we impose (rather than actually having non-zero NAVs as of 2018).
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in�ation-adjusted aggregate commitment size of venture funds is less than 11% of the PE

total (untabulated). We exclude funds with a vintage after 2008 from our sample due to

the low resolution rates of funds even in the 2009 vintage. We show later that the high

weight of the last-reported NAV in the distributions series may confound the interpretation

of inference about PE funds performance using the SDF method�as it e�ectively assumes

that Q4 2018 distributions were a factor of 10 larger than an average quarter.

B. Constructing the SDFs

Proxy for CAPM shocks As outlined in section I, each of our SDFs require specifying

the state variables that summarize the economy at each point in time. For the SDF im-

plied by the power-utility CAPM, we follow Korteweg and Nagel and use the continuously

compounded return on the CRSP value-weighted index as a proxy for {rm}t∈T .
Estimation of LRR shocks We follow Colacito and Croce (2011) to obtain estimates

of the latent long-run risk process xt, as well as the innovations to it, ψeσet+1 ≡ εx,t, and

the consumption growth process, σηt+1 ≡ εc,t. We obtain estimates, x̂t, as the projection

of quarterly growth in consumption (i.e., ∆ct) on the one lag of consumption growth, the

consumption to output ratio, the price-dividend ratio, the risk free rate, and default spread.

This regression is estimated over the period 1951 to 2018. Data on U.S. consumption of

nondurables and services, gross domestic product, and population are from the National

Income and Product Accounts of the Bureau of Economic Analysis. Consumption growth

is real per capita personal consumption expenditures in non-durable goods and services.

Where applicable, the data are adjusted for seasonality. Yields on 3-month Treasury bills,

dividends, and dividend yields for the United States are from the Center for Research in

Security Prices. Consumer price index in�ation and the spread between BAA and AAA

corporate bonds were obtained from the website of the Federal Reserve Bank of St. Louis.

et+1 is the �tted residual of an AR1-model estimated on the x̂t-series, and ηt+1 = ct − x̂t−1.

Estimation of Habit shocks For the habits model, we require a series of innovations to

consumption growth. Following Ghosh, Julliard, and Taylor (2016), we obtain consumption

growth, the real per capita personal consumption expenditures in non-durable goods, from

the National Income and Product Accounts of the Bureau of Economic Analysis. ut+1 is then

the deviation in log consumption growth from its sample mean. The summary statistics for

these macro economic and �nancial variables used to construct the LRR and the habit SDF

shocks are reported in the �rst �ve rows of Panel B of Table I. While we construct the

SDF series at quarterly frequency, the table reports data at quarterly frequency to ensure

comparability with other series discussed below.
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CAPM parametrization In the �rst part of the paper, we keep the parameters, θ,

governing each SDF, �xed to those from the prior literature. We refer to these as �o�-the-

shelf� SDFs. For the CAPM SDF, we consider two sets of parameters. First, we denote the

K-S CAPM as the SDF given in Equation 3 where a = 0 and γ = 1. Second, we denote the

K-N CAPM as the SDF corresponding to the GPME estimates of venture funds in Korteweg

and Nagel.7 Speci�cally, we set a = 0.012, on a per quarter basis, and γ = 2.65.

CBAPM parametrization For the SDF implied by the CBAPMs, we use the following

calibrations to construct these �o�-the-shelf� SDF series. For the long-run risk model, we

follow Bansal and Yaron (2004) and set σ = 0.0135, ψe = 0.1085, ρ = 0.9793, ψ = 1.5,

γ = 10, and κc = 0.9649. For the external habits model, we follow Wachter (2005) and

set b = 0.011, φ = 4
√

0.894, and γ = 2. σ is set to the sample standard deviation of log

consumption growth as in Ghosh, Julliard, and Taylor (2016). We set the unconditional

mean of CBAPMs so that the average log change is equal equal to that of the log-utility

CAPM SDF.

Short-term correlations between SDFs The next three rows panel Panel B of Table I

for the 1979�2018 sample, at annual frequency December-to-December. Meanwhile, last

three columns of the panel report correlations of each of the series with the respective SDF.

It follows that all three SDFs positively co-move, albeit, at 0.691, the correlation is not

particularly high even between the CBAPM SDFs and is predictably lower�at 0.347�

between the Habit and the CAPM SDFs.

C. PE fund investors and consumption-based SDFs

Rationale for the correlation/ spanning tests We next examine the information

content of these series relative to the cash �ow risk of the nontradeable assets e�ectively

held by backbone PE fund investors, such as university endowments and public pension

plans. These non-investment cash �ows�namely, claims on alumni base and pension plan

contributors�are quite large relative to the investment income of these investors. For exam-

ple, alumni gifts are on average 17% of the operating budget of a typical U.S. university with

an annualized variance of 35% (Gilbert and Hrdlicka, 2015) compared to typical investment

returns are 5-to-8% per year.8

Gifts and SPP data description To this end, we explore the following series. ∆UEd

Gifts is the growth rate of gifts to US institutional endowment funds obtained from the

Council for Financial Aid to Education. ∆SPP is the growth rate of contributions to state
7 The drift is corrected to re�ect that series are in�ation-adjusted in this case. However, it makes virtually

no di�erence for inference about fund NPV since cash �ows are also de�ated accordingly.
8 2018 NACUBO-TIAA Study of Endowments.
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pension plans, equally weighted by assets, obtained from the Center for Retirement Research

at Boston College.9 Both series are adjusted for in�ation and available at the annual fre-

quency. A negative correlation between these series and an SDF indicates that the asset

payout is low in a high utility state and vice verse. Moreover if CBAPM SDFs explain varia-

tion in, say alumni gifts growth, beyond that of CAPM then it is more likely that endowment

overall portfolio risk is not �spanned� by standard tradeable risk factors.

Potential endogeneity in gifts data. However, from the correlation analysis in panel

B it appears that ∆UEd Gifts does not meaningfully correlate with either of the SDFs while

for CAPM the correlation is even weakly positive. One potential explanation for this fact

is endogeneity in endowment gift growth whereby the universities are able to receive more

donations during times the returns on their �nancial investments are low. In other words,

the supply constraint on donations is not binding. Another potential explanation is that the

dates in the academic �scal year are simply misaligned with calendar year.

The importance of alignment with academic year-end as evidence that gift

supply constraint is binding Panel C of table I shows that shifting the SDF series to

measure changes from June-to-June indeed has a signi�cant e�ect on measuring these cor-

relations. The panel reports regression results of ∆UEd Gifts on our three SDF series,

where the dependent and explanatory variables are standardized to have zero mean and unit

variance. In the �rst column, ∆UEd Gifts is regressed on the negative of the cumulative

log market return over previous 12 months ending in June. The correlation increases from

roughly zero to 0.508 and is statistically di�erent from zero using standard errors robust

to serial autocorrelation. This result is consistent with the binding supply constraint on

donations, as well as with results in Gilbert and Hrdlicka (2015) who use a di�erent dataset

that starts in 1993. Therefore it is informative to compare the extent CBAPM SDFs explain

the residual variation in the ∆UEd Gifts time series.

CBAPMs span the variation in gifts that CAPM does not Columns 2 and 3 of

panel C show that the correlations between ∆UEd Gifts and the CBAPM SDFs also increase

notably. These increases suggest that accounting for the intra-year variation in CBAPM

SDFs is empirically important. Moreover, the correlations are of similar magnitudes as those

with the CAPM SDF. The next two columns show that a signi�cant portion of that co-

movement is actually orthogonal to that of the CAPM. The coe�cient for the standardized

Habit and LRR SDFs remain statistically signi�cant even if the market return is added as an

additional explanatory variable. The coe�cient on the market return becomes insigni�cant

at conventional levels in this multivariate setting. Finally, the last column of the panel

suggests that each of the three SDFs exhibits about same amount of independent covariation
9 The SPP series are only available from 2002.
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with the growth in gifts to university endowments.

Post'99 correlations going stronger, correlations with SPP Panel D of Table I

shows the realized correlations over the past 10 years. As in panel C, the changes are mea-

sured from June to June. We see that, if anything, the statistical link between endowment

gifts and CBAPMs appears to have strengthened recently. For example, the correlation be-

tween ∆UEd Gifts and the Habit SDF rose from -0.51 to -0.70. This correlation is also larger

in magnitude than the correlation between ∆UEd Gifts and consumption growth. Contri-

butions to state pension plans are more strongly correlated with CBAPM SDFs than with

our CAPM-like SDFs�especially in the LRR case�even though the span of ∆SPP data is

too short for formal tests.

Measurement error caveat We note that probably fewer endogeneity concerns ap-

ply to the variation in ∆SPP, which is a function of labor force size and real earnings

growth, whereas the intensity of outreach to alumni is the universities' discretion. Yet both

are imperfect proxies and subject to potentially large measurement errors. However, these

measurement errors should be attenuating the correlation coe�cient towards zero across all

three SDFs. The possibility that some gifts are in the form of marketable securities may be

amplifying the correlations with CAPM SDFs rather than the CBAPM SDFs.

Generalization of correlation results We note that these correlation results also

extend to alternatively calibrated models of each respective SDF type (CAPM, Habits, LRR).

The correlations are exactly the same for factors that are a�ne transformations of those

we consider�e.g., calibrations that assume di�erent risk aversion levels (slope) or di�erent

unconditional mean of the SDF (drift).

D. When do SDFs disagree?

Compare the SDF series at longer horizons We now examine SDF correlations at

horizons that commensurate with the duration of PE funds. Panel A of Figure 2 depicts 24-

quarter rolling log returns at semi-annual intervals for our four SDF series: the K-S CAPM,

the K-N CAPM, the LRR SDF and the Habit SDF. This panel suggests that over longer

horizons the SDF series may depart notably. For example, the CAPM SDFs �disagreed� with

CBAPM SDFs over the utility of payouts from 6-year old investments harvested during the

2002-07 period and, even more so, during the post-GFS period. In the latter episode, the

Habit and LRR SDFs re�ected subdued consumption growth rates, despite markets rallying

strongly (and vice verse in the former episode).

Discuss episodes of disagreement within model type There are also instances of

notable disagreement within model types. For example, the Habit model regards 2017-18
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as a low utility state for payouts after the consumption surplus ratio rallied. In contrast,

the cumulative innovation in the persistent component of the LRR model has been net-

zero since 2012. The disagreement between CAPM calibrations is limited to magnitude, by

construction. These di�erences become meaningful after strong trends in market returns,

such as during late 90s and post-GFS.10

III. PE performance with �o�-the-shelf� SDFs

Reiterate that we do not temper with any parameters yet We now apply these

SDFs to evaluate the performance of PE funds. Speci�cally, we compare the NPVs of PE

funds using the SDFs implied by CBAPMs with the NPVs calculated using the CAPM SDF.

As indicated in the previous section, we construct each SDF series using parameters from

prior literature.

De�ne NPV Our goal is a sample counterpart of the following expectation:

NPV =
T∑
τ=0

∑
s∈S(τ)

Cs,τ ·Ms,τ · p{s(τ)} , (8)

where p{s(τ)} denotes the probability of realization of state s speci�c to horizon τ , such

that
∑

s∈S(τ) p{s(τ)} = 1, and T is the last period of the typical fund operations, while Cs,τ
and Ms,τ are the cash �ow and discount factor realizations in that state. For example, Ms,24

is the gross return on the SDF over a 24-quarter interval, log of which is plotted in �gure 2.

Feasible estimator of NPV A natural estimator of the expectation in (8) is:

NPV =
1

N

N∑
i=1

T (i)∑
t=b(i)

CitMb(i):t , (9)

where Cit is the cash �ow on calendar quarter t made by fund i = 1, ..., N and t denotes

the time between calendar quarters b(i) and T (i) that the fund was operating while Mb(i):t

is the gross return on the SDF between quarters b(i) to t. Note that if the same number

of funds started each quarter and each fund invested in one deal held for 24-quarters (i.e.,

had one negative cash �ow at b(i) and one positive at T (i), s.t. τ = T (i) − b(i) = 24),

estimates of p{s(24)} would be equal across the state realizations plotted in panel A of 2. In

10 In untabulated analysis, we verify that correlations between endowment gift growth and our SDF series
remains tight at longer horizons. For example, the correlations of 5-to-7-year changes are -0.56 to -0.66
for CAPM calibrations and -0.72 to -0.74 [-0.76 to -0.79] for LRR [Habit] SDF. The correlations between
endowment gift growth and the innovations in the two CBAPM SDFs are consistently stronger than the
correlation between endowment gift growth and cumulative consumption growth.
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practice however, estimates of p{s(τ)} given in (9) will re�ect large di�erences in the number
of funds with non-zero cash �ows in τth quarter since inception. This number is generally

proportional to but not fully explained by either the number of funds of a given age or the

portfolio values of those funds.

Describe the o�-the-shelf NPV table layout Table II reports NPV for both venture

and buyout funds for each the four SDFs plotted in Figure 2 across two weighting schemes.

In columns 1 [3], we normalize Cit by the commitment size of each venture [buyout] fund

(i.e., we equally weight each fund's cash �ow per dollar of capital committed). In columns

2 [4], we rescale each fund's cash �ows relative to the average commitment size within the

funds vintage and type. Standard errors, reported in parentheses under each point estimate,

are computed using the method of K-N that accounts for spatial distance in cash �ow dates

across funds.

Discuss the O�-the-shelf NPV results for CAPMs The table reveals several in-

teresting patterns. Under the K-S CAPM SDF, the NPV estimates of both venture and

buyout funds are positive and have similar magnitudes, even though the standard errors are

notably higher in the venture sample. The size-weighted NPVs of 17.7�19.4 cents per dollar

of capital committed are about one standard deviation below the equally-weighted estimates

(26.9�24.5 cents). In contrast under K-N CAPM SDF, the NPV estimates turn negative (al-

beit statistically insigni�cant) for venture funds under both weighting schemes. For buyout

funds, they become closer to zero. The size-weighted strategy features NPVs that are 3 to

9 cents lower than the equally-weighted estimates, though this di�erence is small relative to

the standard errors of 12- to 15-cents.

Describe the o�-the-shelf NPV results with CBAPMs Using the CBAPM SDFs

to evaluate PE fund performance, we �nd very large realized NPVs�on the order of several

dollars per each dollar committed�for both venture and buyout funds. In contrast to the

CAPM SDFs, CBAPMs suggest that a size-weighted strategy would have performed better

than an equally-weighted one. The magnitudes are particularly large with the LRR SDF.

Venture [buyout] NPVs are 3.9 to 5.8 [5.0 to 6.7] dollars and statistically signi�cant (although

they are not statistically di�erent from each other). The Habit SDF suggests statistically

higher NPVs for buyout funds than for venture funds�1.6 to 1.8 dollars versus 60 to 95

cents.

Contrasting the fund NPVs against the pricing errors on public benchmarks

The results for CBAPMs are especially striking given that both models appear to price

publicly-traded assets reasonably well during our sample period. Columns (5) through (7)

of Table II report mean quarterly pricing errors for three publicly traded benchmarks�the

CRSP value-weighted index (i.e., our proxy of the public market portfolio), and the Fama-
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French value-weighted Small Growth and Small Value portfolios. These mean quarterly

pricing errors are de�ned as:

PxErr =
1

T

T∑
t=1

(RtMt − 1) (10)

where t=1 [T] corresponds to Q1 1979 [Q4 2018] and Rt [Mt] denotes the gross return on the

respective benchmarks [SDF] in that quarter. The average pricing error for the public market

and Small Growth portfolios are 70 basis points, or less, per quarter for both CBAPMs. These

pricing errors are much smaller economically than the average pricing errors of 1.5�1.8% for

the Small Value portfolio. However given the 2% autocorrelation-robust standard error, the

pricing errors for the Small Value portfolio are statistically insigni�cant and are of a similar

magnitude as with CAMP models.

IV. Discussion

Naive interpretation of OTS NPVs table A straightforward interpretation of the

NPV inference in Table II is that investments in PE funds were on average highly rewarding

to investors whose marginal utility for returns is concordant with the variation of the habit

and LRR SDFs. This could potentially explain the continued interest of endowments and

public pension plans to PE fund investing.

PE funds or �nancial assets in general? Another interpretation however is that Ta-

ble II indicates the coincidence of high marginal utility for payouts, as measured by CBAPM

SDFs, and the peaks of the sample PE fund assets (and, hence, high magnitudes of sub-

sequent payouts). In other words, these large NPVs may capture the timing of SDFs with

commitments to PE funds, much less so the value that PE fund managers might have added

through selection and nurturing speci�c investments. This appears a highly plausible expla-

nation giving the time series of PE fund assets plotted in �gure 1 and episodes of CBAPM

SDF departures from the CAPM series as plotted in �gure 2.

SDF misspeci�cation possibility Yet another alternative explanation is that the �o�-

the-shelf� SDFs we use are misspeci�ed for our context. For example, it could be that the

measurement error on the consumption and the background risk shocks we extract from the

macroeconomic data happened to be upward-biased during the times PE activity was high.

Or it could be that the investors have been more (or less) risk-averse during the PE sample

period, than on-average during the 20th century per the �canonical� calibrations.

Build replicating portfolios to examine the alternatives To shed more light on
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this and related questions, we follow the well-established route in the performance evalua-

tion literature (see, e.g., Farnsworth, Ferson, and Jackson, 2002) and construct replicating

portfolios that do not imply any value-added by the manager. We then repeat the analysis

in Table III using these hypothetical cash �ows.

A. PE fund replication

Cash �ow rule in pseudo funds We closely follow K-N to construct pseudo funds

(also referred to as �benchmark funds�) for each sample PE fund. The capital call amounts

and the dates of all cash �ows by each pseudo fund are assumed to exactly match those

of the respective actual fund. The pseudo fund NAV on a given date is the date value

of to-date capital calls invested in a public benchmark net of to-date distributions which

magnitude is determined a �xed rule. Speci�cally, the pseudo fund distribution has two

components. The �rst component is equal to the public benchmark return accumulated

since the previous cash �ow date. The second component pays out a fraction of the capital

that was in the pseudo fund after the previous cash �ow date, and the fraction is equal to

min
(
(τ − p)/(40− p), 1

)
where τ [p] is the since-inception quarter of the current [previous]

distribution by the actual fund. Thus, the distribution rule of pseudo funds captures the idea

that the pace of distributions accelerate as the 10th anniversary approaches, yet depends

also on the frequency of distributions by actual funds and returns on the public benchmark.

Pseudo fund NAVs comparison to actual Panel A of �gure 3 plots the aggregate

asset value of pseudo funds investing in public market (i.e. CRSP index). The dashed line

indicates the dollar values adjusted for in�ation, whereas the solid red line plots same series

but de�ated by the CRSP index capitalization. Hence these series are naturally comparable

with the as-reported aggregate NAVs of PE funds from �gure 1. We note that the pseudo

fund NAVs, while tracking the overall pattern and magnitude of actual NAVs rather closely,

are less volatile during the episodes of high market volatility, such as around 2000-01 and

2008-09. The most striking di�erence from �gure 1 however is a much lower residual NAV

as of 4Q 2018. At $95 bln, it is less than half of the $215 bln reported by actual funds.

Pseudo fund distributions compared to actual Panel B of �gure 3 plot the aggregate

distributions of pseudo funds in comparison to those of the actual funds as well as the

aggregate capital calls (which are constructed to mimic the actual funds exactly). We see

the two distributions series are highly correlated (at 81 [91]% in levels [logs], untabulated)

but nevertheless depart markedly during some periods�e.g., during 1999�2001, before and

after the GFS onset. Besides the di�erence in risk exposures and excess returns realized

by actual funds, the discrepancies in distribution series also re�ects the fact that actual
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fund distributions are not governed by the deterministic rule as are those of pseudo funds.

Importantly, these di�erences re�ect the discretion of fund fund managers�e.g., to slow

down the distributions during 2014�2018, which CBAPM SDFs characterize a low marginal

utility periods (as evident from �gure 2).

Similarly, we construct pseudo funds investing in small growth and small value stocks.

B. Pseudo fund NPVs

Describe the pseudo fund NPV table layout Table III reports the NPV analysis

similar to that Table II but on pseudo fund cash �ows. In panel A, the pseudo fund cash �ows

are weighted equally, while in panel B � by the size of the actual funds. The rows in each

panel correspond to the NPV point estimates and robust standard errors thereof by SDF

type, exactly as in table II. In both panels, columns (1) and (2) report results for venture

pseudo funds investing in, respectively, public market and small growth; while columns (3)

and (4) do so for buyout pseudo funds investing in public market and small value.

Describe the quarterly pricing errors weighting Also as in table II, columns (5)

through (7) of Table III report the average quarterly pricing errors from the broad public

market, small growth, and small value portfolios. However, here we use weights proportional

to the relative size of pseudo fund NAVs. Speci�cally, in Panel B we report

PxErr
W

=
T∑
t=1

wt−1(RtMt − 1) (11)

where wt = NAV P
t /
∑T

τ=1NAV
P
τ and NAV P

τ is the end-of-the-quarter aggregate pseudo

fund NAVs scaled by the public market cap. Whereas in Panel A we equally weight each

pseudo fund NAVs that are non-zero of the respective calendar quarter.

Describe the quarterly pricing error results, if weighted by NAVs We begin

with an examination of the weighted quarterly pricing errors. First, the weighting does not

make much di�erence for the K-S CAPM with the public market pricing error remaining zero

for every period by construction. Small growth pricing errors move closer to zero but are

still slightly negative at 30bps. Pricing errors on the small value portfolio are positive 90bps

and statistically insigni�cant. For the K-N CAPM, the pricing error predictably improves

from a negative 1.3% to 10bps since their estimation e�ectively imposes a similar weighting

scheme.11 The magnitude of pricing errors notably reduce on the small growth portfolio to
11 K-N use these pseudo fund cash �ows to estimate a power-utility CAMP SDF so that the realized NPV

of those cash �ows is zero along with the NPV of the identically timed investments in risk free rate. K-N
sample is di�erent from ours�it includes only venture funds from Preqin with cash �ows ending in 2012,
albeit the span of vintages is the same�1979-2008.
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-70bps but switch sign and increase in magnitude to 110 bps for small value. However the

sensitivity of the CAPM pricing errors to the PE-activity weighting scheme are dwarfed by

those of CBAPMs. CBAPM pricing errors remain positive but increase by a factor of 2 to

5 and reach up to 3.7% per quarter.

Describe pseudo fund multi-period NPVs Turning to the multi-period NPV anal-

ysis, we note that pseudo fund NPVs tend to be in the same direction as the respective

PxErr
W
but appear stronger statistically. The NPV magnitudes however are not particu-

larly well explained by scaling the quarterly pricing errors by the pseudo fund durations. For

example, the equally-weigthed NPV of pseudo funds investing in small value public equities

funds is 3.9 dollars for each dollar invested (Panel A, column 4, �fth row). It is statistically

signi�cant at the 1% level and is 2.1 times greater than the NPV implied by compounding of

the 3.7% quarterly pricing error for 17 quarters, the average duration of buyout pseudo funds

(untabulated). Similar discrepancies�but of smaller relative magnitudes�are evident for

the CAPM SDFs. For example, equally weighted venture pseudo funds show an 11 cent loss

from investing in a broad equity index with K-N CAPM (panel A, column 1) even though

the quarterly pricing error is positive (column 5).

The e�ect of weighting scheme and benchmark choice on multi-period NPVs

Next, we note that weighting pseudo cash �ows by the actual fund size (panel B) tends to

increase the CBAPM-based NPV magnitudes by about the same amount as for the actual

fund cash �ows in table II while also increasing the magnitudes of the on the quarterly

pricing errors (columns 5�7) by a factor 1.3 to 1.7. Finally, we note that the CBAPM-based

NPVs of venture pseudo funds are lower than those of buyout pseudo funds by about the

same amount as actual fund buyout NPVs exceed those of the venture. Moreover, this wedge

appears greater for the size&style pseudo funds, especially for the habit SDF.

C. Implications

What does this mean for the SDF timing interpretation Overall, the results in

Table III do suggest that the period of high PE investment activity took place when the

performance of �nancial assets provided an extraordinarily good hedge against aggregate

consumptions trends. On one hand, this correlation may have nothing to do with private fund

investing. On the other hand, PE funds might have been particularly convenient �vessels�

to gain these utility-improving long-duration exposures. In the end, PE fund managers are

at least partially responsible for the decision of when to launch a fund and have discretion

over the timing of its cash �ows.12

12 Gredil (2018) shows that these decisions re�ect information not embedded in public market prices.
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What does this mean for the comparison across fund types This pseudo fund

analysis also cautions against reading too much into the di�erences in NPVs of venture and

buyout funds, despite it being statistically signi�cant. Table I and �gure 1 show that the

venture funds are far less resolved than buyout funds as of Q4 2018. At this point in time, the

habit SDF implies very low utility of payouts (�gure 2). While following the literature, we

�assume� that these NAVs are paid out then, we actually know that venture fund managers

chose not to make distributions during this period.

What we do in the following sections In the remainder of the paper, we provide

re�nements to this SDF-based methodology. Our goal is more e�cient estimates of the value

PE fund managers created with a particular focus on which portions of this performance is

likely relevant on a forward-looking basis. While the e�ciency gains are signi�cant with

CAPM-like SDFs too, their much larger with non-tradeable SDFs, such as those implied by

LRR and Habit models, and in situations when the time span in the fund sample is short.

What we do not do There are some important dimension that we do not pursue in

our analysis. These include enhancing the underlying asset pricing model (e.g., constructing

a �better SDF� from many tradeable factors) and estimating the potentially time-varying

exposures of PE funds to various tradeable factors (i.e., replicating PE fund exposures).

These goals are accomplished in contemporaneous work by Gupta and Van Nieuwerburgh

(2019) (henceforth, GvN). Instead, we focus on the structural parameters with clear economic

interpretations of relatively simple SDFs. Furthermore, we assume that the alternative to

investing in PE funds is the broad public equity market and limit our replication to the style

and size portfolios standard to the asset pricing literature. We note, however, that even

these straightforward public equity alternatives stretch the feasibility constraint for some

investors. For example at its peak of over $800 bln in 2012 (Figure 1), the pseudo fund

NAVs actually exceeded the combined market cap of small growth and value stocks by $100

bln.13

V. Re�ning the Methodology

GMM-nesting of the SDF-method The SDF-based inference is nested in the General-

ize Method of Moments methodology14 One important assumption we make is that quarterly

returns on PE fund assets are simply poorly observed (rather than unde�ned).

13 According to Fama-French de�nitions that correspond to the small growth and value return series
utilized in this study and elsewhere. The average for 1999�2015 is $680 bln [4.8% of the total market cap].

14 See, e.g., Jagannathan and Wang (2002); Farnsworth, Ferson, and Jackson (2002); Sorensen and Jagan-
nathan (2015); Korteweg and Nagel (2016) or Cochrane (2009); Campbell (2017) for textbook exposition.
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A. NPV-based inference bias

Quarterly pricing errors as instrumented Euler equation The pricing error equa-

tions (10�11) amount to Euler restriction standard for asset pricing model tests. Accordingly,

the evaluation of an investment strategy returning Rt involves two steps. In the �rst step,

one estimates the SDF parameters given the relevant benchmarks:

E
[
zt
(
RB
t+1 ·Mt+1(θB)− 1

)]
= 0 . (12)

where RB
t is a vector of gross returns on the benchmark assets for period t, Mt(θB) is the

series of SDF parametrized with θ = θB that make equation (12) hold, while zt are the

instruments implementing the investment strategy (Hansen and Richard, 1987; Cochrane,

1996). If the case under evaluation involves a constant allocation to the strategy, then zt = 1

for all t. Thus, zt must be independent from the SDF pricing error:

eBt+1(θ) := RB
t+1 ·Mt+1(θ)− 1 , (13)

if the parameter vector, θB, is estimated, instruments need be lagged relative to the strategy

returns and the SDF realization.

First-best test for strategy performance with Euler equation Ideally in the second

step, we would like to perform the following test on the pricing errors implied by the strategy

periodic returns:

et(θB) = Rt ·Mt(θB)− 1,

H0 : Ê
[
zt−1et(θB)

]
= 0 HA : Ê

[
zt−1et(θB)

]
6= 0 .

(14)

However, since the per period returns for PE funds cannot be observed reliably, it is natural

to replace test (14) with a similar test based on the Net Present Value of PE fund cash �ows:

H0 : Ê
[
NPVi(θ

B)
]

= 0 HA : Ê
[
NPVi(θ

B)
]
6= 0, (15)

where Ê
[
NPVi(θ

B)
]
is estimated by Equation (9).

Conceptual equivalence of the NPV-based restriction The premise for equivalence

between the two tests is the existence of a mapping between the sequence of fund per-period

returns and its cash �ows. Denote this mapping with δit ∈ [−Cit, 1], such that:

Cit = −Ci0 · δitRit ·
t−1∏
τ=s(i)

Riτ · (1− δiτ ), (16)
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where Rit is the gross return on fund i assets in period t, Cit is fund i's uncalled capital

as of period t, and the �rst cash �ow for every fund is a capital call (i.e., Ci0 < 0). It is

important to note that this mapping is not invertible�for di�erent sequences of per period

returns one can have the same sequence of cash �ows so long as the geometric average of

returns between cash �ows is the same.

(Largely) �nite sample di�erence b/w the two tests While the two tests may

indeed be equivalent in expectation, (15) will be biased relative to (14) for any feasible �nite

sample of PE fund cash �ows�see PROPOSITION 1 in Appendix.A1:

NPVi(θB) =
(
1 + et(θB)

)FundDuration
+ CompoundingError . (17)

Besides the fund duration e�ect�which is (log) linear in the test statistic of Equation (14)

and, therefore, inconsequential�the inference based on estimates of fund NPV is a�ected by

compounding error bias. This bias relates to the sampling error which is slow to decay even

if in expectation it is indeed zero and et's (per equation 14) are independently distributed.15

Compounding bias origin in the long-term horizon state probability estimates

It is insightful to think about the origin of the compounding error bias as the di�culty

in estimating the state probabilities p{s(τ)} per equation (8) for large τ�e.g., 4- to 10-

year�reliably. That goal requires many non-overlapping periods of length τ and is virtually

impossible with only 40-years of PE cash �ow data. Thus, p{s(τ)}-estimates for large τ are

not only very noisy (so we cannot test for that component of GP skill), but also not very

useful since the odds of the same returns path in following 10-20 years is zero.

Compounding bias origin in the non-random sampling of geometric averages

Another way to think about the compounding error bias is as arising from the di�erences

between the geometric and arithmetic averaging. The NPV estimates correspond to geomet-

ric averaging. While generally useful for portfolio construction (see, e.g., Hakansson, 1971),

these geometric averages are measured over a sample of horizons which is too small to be

representative. Neither is it independent from the per period pricing error realizations.

Synopsis of Compounding error bias from simulations Appendix.A2 examines the

properties of the compounding error bias via simulations of 44-quarter funds making uniform

distributions from 20th quarter. The magnitude of the bias varies from 6 to 50 percent of

the funds' annualized idiosyncratic return volatility depending on the SDF type and sample

characteristics. The bias remains economically meaningful even if there are no measurement
15 From PROPOSITION 1, it also follows that if pricing errors exhibit autocorrelation, the expectation of

the compounding error is non-zero. This is a relevant consideration given that Ang, Chen, Goetzmann, and
Phalippou (2017) �nd autocorrelation in PE return residuals with respect to standard factor models. We
acknowledge that by the law of iterative expectations, the Euler restriction has to hold at any horizon (see
Chernov, Lochstoer, and Lundeby, 2018, (CLL) for discussion).
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errors in the SDF, the fund sample spans a hundred of vintage years, and regardless of how

big the number of funds per vintage is. The bias also increases as the span of vintage years

in the fund sample contracts and/or as the fund sample becomes unbalanced across vintage

years. Importantly, the sign and the magnitude of the bias depend on the level of abnormal

returns and its path.

Connect back to discrepancy between pseudo fund NPV and NAV-weighted

errors In other words, reliable estimates of E
[
NPV

]
are infeasible and are not as practi-

cally relevant as the expected per period return per test (14). Consequently, the weighted

quarterly pricing errors per columns (5)�(7) of Table III are more informative of the SDF

misspeci�cation than the pseudo fund NPVs, since the latter re�ect the compounding error

bias.

B. Compounding error correction

GPME-way to estimate SDF parameters There are several ways to correct the

compounding error bias. One way is to estimate θ at the frequency corresponding to the

average duration of the sample PE funds. K-N implement this approach by using pseudo

fund cash �ows discussed in section IV.A. In K-N, the �rst step is (implicitly):

E[NPV B
i (θCB)] = 0 (18)

where NPV(θCB)Bi is the vector of pseudo fund NPVs derived from investing in benchmark

assets, b = 1, ..., B:

NPV b
i (θCB) =

T (i)∑
t=s(i)

Cb
it

t∏
τ=s(i)

Mτ(θCB), (19)

and Cb
it are obtained from utilizing equation (16) and assuming a particular mapping function

δ̃it in place of the unobserved δit. These are the pseudo fund NPVs introduced in section II.A.

GPME procedure as compounding error correction One can think of the K-N

method as jointly estimating the SDF parameters and correcting for the compounding error

in the pseudo fund NPV estimates. The correction is embedded in θCB confounding the eco-

nomic interpretation of these parameters. Simply put, θCB attempts to �t the compounding

error embedded in the pseudo fund NPVs. While such θ might not even exist for some SDFs,

it can also result in implausible estimates.16

16 For example, large and positive compounding error bias in the pseudo portfolio requires large and
negative drift in the SDF to satisfy Equation 18. Such estimates imply unrealistic risk-free rates and push
the present values of all cash �ows towards zero leaving little power to reject HA (see Appendix.A2).
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B.1. Excess NPV

pseudo fund NPVs as feasible estimator of compounding error bias Because

the compounding error in the NPV estimate is present for pseudo funds, NPV b(θB) is

informative about the relative size of the compounding error in NPV (θB) if the benchmark

asset is a reasonable proxy for private equity returns. The presence of the compounding

error implies that the �nite sample estimate of E[NPVi(θ
B)] is shifted away from the true

values just as the estimates of E[NPV b
i (θB)] so long as their pricing errors under a given

SDF exhibit strong positive correlation. A simple way to mitigate the compounding error

bias in PE fund NPV estimates is to subtract the estimates of E[NPV b
i (θ

B)] from those of

E[NPVi(θ
B)] since both have the same direction of the bias arising due to the SDF history

and the common component in the returns Rit and Rb
it:

∆NPVi(θ) = NPVi(θ)−NPV b
i (θ),

H0 : Ê
[
∆NPVi(θ)

]
= 0 HA : Ê

[
∆NPVi(θ)

]
6= 0.

(20)

ExcessNPV versus GPME Comparing this approach to the GPME statistic of K-

N, excess NPV does not require the existence of θCB that satis�es equation (18) while

allowing for more e�cient estimates of SDF parameters using standard time series GMM

(see PROPOSITION 2). Moreover, it does not require that the set of benchmarks used to

identify SDF parameters be the same as those used to determine the bias correction related

to the PE returns path. In fact, we argue that the set of benchmarks used to identify θ

and the set of benchmarks used to correct for compounding error should be di�erent (see

PROPOSITION 3). This leads to excess NPV being a more e�cient estimate of PE funds

NPV than GPME, all else equal.

ExcessNPV's relatedness to GvN's Risk-Adjusted Pro�t Conceptually, the excess

NPV metric is close to the Risk-adjusted Pro�t (RAP ) measure proposed in GvN, whereby

the �budget feasible replicating portfolio of each fund� corresponds to NPV b
i against a par-

ticular SDF derived from publicly tradeable factors. An important distinction is that GvN

attempt to replicate the magnitudes of PE fund distributions, whereas we only match the

dates (as do K-N). Because PE GPs have a discretion over fund cash �ow, we argue that

the timing of the distributions is a source of value added, especially when the SDF does not

tightly correlate with the returns on publicly traded assets. Matching the dates of pseudo

fund distributions to those of actual funds allows us to control for variation in a fund's exit

conditions and the �softly binding� constraints on fund life.
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B.2. Bootstrap

Bootstrap as a way to gauge the sequencing e�ect Since compounding error arises

from a particular sequence of pricing errors, re-sampling the pricing errors o�ers a natural

solution to gauge the e�ect of drawing a particular sequence of per-period pricing errors

(equation 13). Thus, randomizing the sequence of pricing errors provides a baseline to

construct a sample estimate of the compounding error.

Bootstrap as a known way to improve GMM's J-stat properties (and hence

those of NPV) Also, given that both tests (14) and (15) can be viewed as J-statistics for

the overidentifying GMM restriction, a bootstrap is particularly attractive since it is known

to improve the �nite sample performance of this type of test (see, e.g., Hall and Horowitz,

1996). We however cannot observe the per period pricing error for PE funds, et(θ). Prior

literature �nds that PE fund reports of periodic returns are subject to appraisal bias (see,

e.g., Ewens, Jones, and Rhodes-Kropf, 2013; Goetzmann, Gourier, and Phalippou, 2018).

Nevertheless, we argue and provide simulation-based evidence that bootstrapping feasible

estimates of PE fund et(θ) is e�ective in correcting the compounding error.

General intuition and key assumptions behind Bootstrap in our context To im-

plement this bootstrap correction, we construct a high-frequency proxy, r̃t, of the unobserved

PE fund returns, where r̃t is the residual from an ARMA(p,q) model of average quarterly

returns of PE funds based on reported NAVs. Utilizing expression (16), we then construct

pseudo PE funds from r̃t itself and from the resampled sequences of r̃t and evaluate the

NPVs of those cash �ows. This informs us of the sign and magnitude of the compounding

error bias inherent in the feasible PE NPV estimate, as well. Importantly, the validity of

this bootstrap procedure does not require that r̃t is a good proxy of the actual per period

fund return, rt, or that the covariance of r̃t with the SDF is a good proxy of the covari-

ance of rt and the SDF. The assumptions under which it reduces the compounding bias are

much weaker � r̃t and rt are at least weakly positively correlated on a per period basis and

cointegrated on a cumulative basis. Nevertheless, the e�ciency gains are partially driven by

using information that is additional to the information contained in the PE cash �ow data.

Namely, we supplement the information set with fund NAV observations.

Speci�c steps and notation for Bootstrap implementation in our context Specif-

ically, denote the sample average NPV estimate across these pseudo PE funds for an estimate

of θ as ˆNPV
∗
(θ). Our bootstrap procedure re-samples êt = r̃t − rb,t, the per period pricing

errors of PE fund returns relative to a priced benchmark, to construct a bootstrap sample,

{r̃kt }. Given {r̃kt }, we compute a new estimate of the sample average of the pseudo funds cash

�ows, ˆNPV
k
(θ). Our sample estimate of the compounding error is then ˆNPV

∗
(θ)−NPV k

(θ)

where NPV
k
(θ) = 1

K

∑K
k=1

ˆNPV
k
(θ). Therefore, our bias-corrected estimate of PE fund
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NPV is given by:

NPVBC(θ) = NPV(θ)−
(

ˆNPV
∗
(θ)− ¯NPV

k
(θ)
)
· Duration
Duration∗

, (21)

where the last term adjusts for any duration mismatch between the actual PE funds and the

pseudo PE funds constructed using r̃t.

Bootstrap-corrected NPV versus excessNPV One can view the excess NPV dis-

cussed before as a special case of bootstrap correction whereby
[

ˆNPV
∗
(θ) − ¯NPV

k
(θ)
]
is

set to NPV b(θ). Correspondingly, excess NPV only �nets-out� the part of pricing error

sequencing e�ect that perfectly correlates with the benchmark asset. However, unlike equa-

tion 21, it also removes the e�ect of the sample SDF realizations. This makes both metrics

useful, especially, for inference about PE subsamples that are short in vintage span, feature

unresolved funds, or exhibit large pricing errors for benchmark assets.

C. Implementation

SDF parameter estimation Our implementation proceeds as follows. First to estimate

the parameter vector, we utilize the sample equivalent of Euler equation (12) for a set of

benchmark assets b = 1, ..., P ∈ B for which we observe non-overlaping quarterly returns

Rb
t :

g(θ; zt) =


∑T

t=1 z
1
t−1 ·

(
R1
tMt(θ)− 1

)
...∑T

t=1 z
P
t−1 ·

(
RP
t Mt(θ)− 1

)
 , (22)

We obtain θ estimates using the standard GMM estimator:

θ∗ = arg min
θ

g(θ; zt)
′W g(θ; zt) (23)

where W is a suitable weighting matrix, and z := (z1, ..., zP ) are instruments implementing

the PE strategy. The system is just identi�ed when the number of moments, P , equals the

length of parameters vector θ. When P exceeds it, the system is overidenti�ed, allowing for

greater estimation e�ciency and for testing whether M(θ) is an appropriate pricing kernel�

given the instruments, z, and the returns of the benchmark portfolios, RB.

Instrument choice discussion Our preferred instruments are pseudo fund NAVs ag-

gregated across the full sample of PE funds scaled by the public market capitalization as

discussed in Section II.A and plotted in Figure 3 (Panel A, solid red). This implements the

intuition embedded in K-N GPME estimation that the size of PE portfolios is a natural way

to assess the importance weight for each period while ensuring that the series are stationary.
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These instruments also condition on the past benchmark returns, enabling a more robust

parameter identi�cation in spirit of CLL. We also note that the estimator per (22�23) can

implement K-N GPME exactly, provided that the instruments z are modi�ed accordingly

(see PROPOSITION 2).

horizon-speci�c SDF construction Next, based on equations (4�7), we derive the

horizon-speci�c SDF changes since the idea behind both Habit and LRR models is that

preferences are not time-separable while b(i)�the quarter of fund i start�seems a natural

reference point. For LRR we get:

M(θ)LRRb(i):τ = exp
{
aτ − rrfb(i):τ − γ

b(i)+τ∑
t=b(i)

εc,t − f(γ)

b(i)+τ∑
t=b(i)

ρb(i)+τ−tεx,t

}
, (24)

where rrfb(i):τ is the ex ante real risk free log return in the quarter corresponding to b(i) and

maturity τ ; εc,t and εx,t are, respectively, consumption and the long-run risk innovation in

quarter t rescaled to have standard deviations of σ and ψeσ. For the habit model we get:

M(θ)Habitb(i):τ = exp
{
aτ − rrfb(i):τ − γ

(
1− λ(sb(i))

) b(i)+τ∑
t=b(i)

ut

}
, (25)

where λ(sb(i)) and ut are the consumption surplus as of fund i inception and the consumption

shock innovation as of quarter t. For greater comparability, we include ex ante risk free rate

in the CAPM case as well:

M(θ)CAPMb(i):τ = exp
{
aτ − rrfb(i):τ − γ

b(i)+τ∑
t=b(i)

rmt

}
, (26)

so that all three SDFs have the same conditional expectation, aτ − rrfb(i):τ , albeit aτ can be

numerically di�erent.

Re�ned from KNmapping function for pseudo fund constructionGivenM(θ∗)b(i):τ

for each cash �ow and model of interest, we then evaluate NPV for PE funds and the

pseudo funds using Equations (15)�(19) and compute excess NPV metric as described in

Section V.B.1 as well as bootstrap-corrected NPV as described in Section V.B.2. For this

analyses, our mapping function between per period returns and fund cash �ows, δ̃it, is a
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simpli�ed version of that from K-N (see Appendix.A2):

δ̃it =


Ci,t if Ci,t < 0

min( t−p(i,t)
T ′(i)−p(i,t) , 1) if Ci,t > 0

1 if t = T ′(i)

0 otherwise

, (27)

where p(i, t) is the quarter of the previous distribution made by fund i, and T ′(i) is the life

of the fund, modi�ed to re�ect longer e�ective life expectation for the sample funds that are

far from being resolved, as discussed in Appendix.A3. We show that using last NPV in place

of remaining distributions amounts to a very strong assumption for CBAPMs and suggests

a greater reliance on the excess NPV metric (as opposed to bootstrap-corrected NPV).

Re�ned from KN mapping function for pseudo fund construction For inference,

we rely on a semiparametric bootstrap procedure that utilizes Hansen and Jagannathan (HJ)

bounds to rule out economically implausible SDFs (see Appendix.A4).

VI. Additional results

A. SDF parameter estimates

Intuition for what we do here We apply the time series GMM estimator per equa-

tions (22�23) using. In a nutshell, we are trying to ��ne-tune� the o�-the-shelf SDFs to reduce

the benchmark pricing errors relative to those in columns (5)�(7) of Table III. We estimate

two parameters for three SDFs: (i) the SDF implied by CAPM, (ii) the SDF implied by the

Long-run Risk model, and (iii) the SDF implied by the Habit formation model. Because we

use quarterly returns, the de�nitions in Equations (24�26) simplify to the following:

log
(
M(θ∗)t

)
=


a∗ − rrft − γ∗ · rmt (i)

a∗ − rrft − γ∗ · εc,t − f(γ∗) · εx,t (ii)

a∗ − rrft − γ∗ · ut − γ∗ · uht (iii)

where t counts non-overlapping quarterly periods, uht = λ(st)ut, a and γ are the parameters

of interest while other notation follows section V.C. For CBAPMs, we keep the remaining

parameters �xed at the values from literature as they are either core assumptions embedded

in the respective model and/or not identi�able from our data.

Table layout and CAPM parameter estimates description Table IV reports the

parameter estimates, J-statistics with p-values, the average pricing errors for eight publicly
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traded assets17, and the resulting SDFs' means and standard deviations. Panel A describes

three estimations of the CAPM model, which only di�er by weighting scheme of the quarterly

pricing errors. The weights (i.e. the GMM instruments) are equal (zt = 1) across periods in

column (1), and proportional to the actual [pseudo] funds aggregate NAVs in columns (2)

and (3). We see that applying PE activity weights results in higher relative risk aversion

parameter estimates (albeit the standard errors are large). These weights also moderate the

pricing errors such that J-statistic no longer rejects CAPM as a plausible SDF. At 2.5�3.1,

these γ-estimates are notably lower than the 3.5 [4.1] levels (untabulated) that we obtain

using the GPME procedure for our venture [buyout] sample. Regardless of the weighting

scheme, we see high correlations between the intercept and risk aversion estimation errors,

ρ(a, γ), which is key to understanding the role of the intercept when ex ante risk free rates

pin down the conditional expectation of the SDF as in Equations (26�24). The intercept

essentially o�sets the higher [lower] trend in −γ · ft due to higher [lower] γ.18

Intercept issue with an unconstrained estimation Note that a lower intercept also

relaxes the constraint on the Sharpe ratio of assets that a given SDF can price by increasing

the ratio of SDFs' volatility to its mean (i.e., widening the HJ bounds). While there is an

o�setting e�ect with a CAPM-like SDFs (due to the increase in the slope on the market

return discussed above), the GMM procedure tends to pick very large negative intercepts

(i.e., implying unrealistically high risk free rates) when SDF shocks and the returns of test

assets are not tightly correlated. This is generally the case for CBAPMs and likely for any

nontradeable SDF. In panel B and C, we report results for the two CBAPMs we considered.

In both, we estimate γ for a grid of a-values and take the one that has a closest to zero while

also satisfying the HJ bounds for the test assets.19

LRR parameter estimates description Column (1) of panel B shows that the LRR

SDF, just like the CAPM one, can be rejected with equally weighted pricing errors. However,

this SDF holds up quite well when the pricing errors are weighted by PE activity levels, as

indicated by a relatively low J-statistics in columns (2) and (3). In particular, the pricing

errors on small growth and the broad market index decrease to just -3bps and 9bps per

column (3) as opposed to over 400bps per Table III. Interestingly, this happens despite γ

being quite close to the �o�-the-shelf� level of 10.0 and not varying much across the weighting

schemes. We note that the intercept, under the NAV-based weights, falls from already low

-0.079 in column 1 to imply a quarterly e�ective risk free rate of approximately 3.3% (=1-

17 Only two of size&style portfolios are included in the estimation however: small growth and small value.
18 Accordingly, the adjusted for in�ation intercepts from GPME are 0.035�0.045 against 0.016�0.020 here.
19 Again, typical asset pricing studies do not deal with multi-period cash �ows that require the conditional

SDF drift identi�cation. Moreover, studies that express returns in excess of the risk-free rate do not encounter
the problem of identifying a�see CLL for discussion.
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0.9668) on top of the ex ante T-bill rate.

Habit parameter estimates description The pattern is quite similar for panel C,

which reports results for the Habit SDF: estimates of γ are close to the o�-the-shelf calibra-

tion (2.0) with most variation across weighting schemes coming from the intercept. We also

observe notably tighter pricing errors and improved J-tests under the NAV-weighted speci�-

cation. As with the LRR SDF, the unconditional SDF means are lower for the NAV-weighted

estimations, supporting the measurement error explanation discussed in section IV.

Which weights we prefer and what we use for SDF conditional expectation

For the analysis presented below we use the SDF parameter estimates from column (3)

of each panel to adhere closer to the weighting scheme employed in the K-N GPME. In

unreported results, we also estimate horizon-speci�c intercepts using horizon speci�c ex-ante

risk free rates20 and �nd that the intercepts' magnitudes increase with horizon, albeit not

proportionally to the horizon. However it makes little di�erence for inference about fund

NPVs. We therefore opt for a more simple approach and assume the conditional expectation

of the SDF at horizon τ is given by a · τ +
∑b(i)+τ

t=b(i) r
rf
t for all three models.

B. PE fund NPVs

Describe the layout of the remaining tables Tables V, VI, and VII report results

separately for venture funds, buyout funds, and generalists funds by vintage year cohort.

The number of funds in the group denoted by the row's title is reported in column (1). In

each table, panel A reports analysis assuming equally weighted cash �ow (normalized by

fund size) of all funds in the respective group so that the values from columns (2) through

(12) can be interpreted as the expected NPV cents per dollar from investing in an average

fund from that group. Panels B weight cash �ows proportionally to the in�ation-adjusted

size of each fund, while panels C uses equally weighted cash �ows but restricts the sample

to only to substantially resolved funds only. A fund is considered substantially resolved if

its in�ation-adjusted cumulative distributions exceed the 4Q'18 NAVs by a factor of two.

Continue with table layout description Columns (2) and (3) report K-N GPME

for, respectively, the log-utility (as in K-S PME) and unrestricted CAPM cases. The

(a, b) parameters for the latter cases are estimated separately for three groups within each

table×panel�before 2000 vintage, 2001 onwards, and `All'�and are reported in Internet Ap-

pendix. Columns (4) through (6) report bootstap-corrected NPV estimates21 (section V.B.2)

20 We use the method of Beeler, Campbell, et al. (2012) to estimate real yields for 3 month, 1 year, 5
year and 20 year maturities and linearly interpolate between. For the 5- and 20-year maturities, we use U.S.
TIPS yields starting in, respectively, 2014 and 2003. See Internet Appendix for details.

21 These use ARMA(1,1) to unsmooth feasible per period return estimates. Results are very similar with
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for, respectively, CAPM, LRR, and Habit SDFs estimated in section VI.A. The remaining

columns, (7) through (12) report excess NPV estimates (section V.B.1) for each of the three

SDFs and two pseudo funds�one invests in broad market, the other�in small growth (or

value). The estimates signi�cant at 5%(10%) con�dence level are superscripted with a(b).

We use asymptotic standard errors of Korteweg and Nagel (2016) in columns (2) and (3)

and p-values based on empirical distributions of the bootstrap samples as described in Ap-

pendix.A4. For selected fund cohorts, we also report bootstrap-based standard errors, in

parentheses underneath the respective point estimates.

summary on the empirical results � fund performance perspective While the

following subsections discuss these results in some detail, �gures 4 and 5 summarize our key

empirical �ndings. Both plot bias-corrected NPV by subtracting the NPV of pseudo funds

that invest in broad market, and therefore reduce to minimum the e�ect of the particular

SDF timing. From �gures 4 it follows that, unlike under power utility CAPM, post-2000

venture funds did not destroy value according to both CBAPMs, and performed better than

buyout and generalists in the full sample (1979�2008 vintages). the �gure also highlights

that that the NPV losses incurred in 2007�2008 cohort of buyout and generalist funds against

both CBAPM SDFs stand in sharp contrast with the gains of similar magnitude observed

for substaintially resolved 2007�2008 venture funds.

summary on the empirical results � risk premia variation perspective Mean-

while, �gure 5 shows that variation of PE funds NPV across vintage years tends to be notably

smaller under CBAPMs than under the CAPMs, especially with the LRR SDF. This sup-

ports the view that CBAPMs better capture the time variation in risk premia in private

investment markets.

B.1. Venture

VC thru CAPM lens � KS vs GMPE vs Ours From Table V, we see that un-

der log-utility CAPM (column 2) full sample venture NPV is positive at 18�34 cents, and

marginally signi�cant statistically. It falls notably for the post-2000 vintage to between

zero and 6 cents, depending on the weighting sheme and the resolution rate. The NPV

is signi�cantly positive for 2007�2008 vintages and not especially sensitive to the weighting

scheme. With power-utility CAPM per column (3), we observe negative NPVs of 14�20 cents

albeit insigni�cant statistically, also largely insensitive to the weighting scheme. However,

the NPVs in excess of small growth are positive but insigni�cant 4 cents for substantially

resolved funds. Importantly, the NPVs turn sharply negative for post-2000 funds indicating

other models we considered as reported in Internet Appendix.
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35�49 cent losses. The losses are higher, at 85 cents, and statistically signi�cant for 2007-

2008 vintages, without much di�erence across resolved and unresolved funds. We note that

the bootstrap-corrected NPVs are generally concordant with KN GPMEs by broad vintage

cohorts and on average. However they exhibit less extreme magnitudes than KN GPME,

which suggests losses of 69 to 77 [124 to 127] cents for 2001�2008 [2007�2008] vintages for

the sample that includes highly unresolved funds.

VC thru the LRR lens With the LRR SDF, the full sample venture NPV is positive

and signi�cant at 6�12 cents. We observe some NPV variation due to weighting scheme but

the direction is inconsistent across metrics and resolution stage. The bootstrap-corrected

NPVs are large and positive at 35�38 [51�55] cents for the post-2000 [2007�2008] venture

vintages, albeit statistical signi�cance is mixed. On the excess NPV basis however, post-2000

venture shows statistically signi�cant but economically small losses of 4- to 8-cent, unless

highly unresolved are excluded. In that case, post-2000 appear almost exactly zero regardless

of the benchmark. However, there are positive and statistically signi�cant 6 to 11 cents if

2007�2008 vintages examined separately. Interestingly, we note greater concordance with

Log-utility CAPM than the power-utility one for the LRR model.

VC thru the Habit lens Turning to the habit model, for venture sample we observe

positive and marginally signi�cant NPVs at 36 to 62 cents on a bootstrap basis, but mostly

negative readings of excess NPVs and with low empirical p-values. switch in sign with low

p-values depending on whether unresolved funds are kept in the sample. This re�ects very

low utility the Habit SDF assigns to 4Q 2018 NAVs. Some variation due to weighting scheme

but the direction is inconsistent across metrics â�� bootstrapped NPVs look higher for pre-

and post-2000 funds but excess NPVs look lower pre-2001. Bootstrapped NPV and excess

NPVs for the largely-resolved funds suggest that post-2000 funds performed better than

funds incepted before that. The 2007-08 largely resolved funds look best at 22 and 37 cents

in excess of small growth and public market, respectively, albeit lack statistical signi�cance.

Overall, the NPVs look mostly concordant with those under LRR SDF.

B.2. Buyout

BO thru KS lens From Table V, we see that under log-utility CAPM (column 2) full

sample buyout NPV is also positive at 19�27 cents, but more robust statistically than for

the venture sample. At 55 cents signi�cant statistically, the value is above the average for

2001�2004 vintage cohort. However it deteriorates sharply afterward to reach a 3 cent loss in

the 2007�2008 cohort. The e�ect of weighting scheme depends on vintage â�� higher NPVs

for larger funds during the best-performing vintages, 1996â��2004, but mixed-to-zero e�ect

for other groups.
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BO thru CAPM lens � contrast with Power Utility Unlike for venture funds

however, the full sample buyout fund NPVs stay positive and under the power-utility CAPM

(column 4) at similar magnitudes of 12-to-20 cents but turn insigni�cant statistically. Largely

same pattern as under the log-utility CAPM is observed across vintage groups and based on

K-N GPME per column 3. Nevertheless there are episodes of �disagreement� within CAPMs

even for the bias-corrected ones. One example is pre-1990 funds, where bootstrap-corrected

NPV is negative 28 cents while excess NPV against CRSP-investing pseudo funds is positive

21 cents with both being signi�cant statistically and KN GPME is almost exactly 0. This

group however features only 54 funds. Another discrepancy is with respect to the far better

populated 1996�2000 cohort. At 83�117 cents, it has the highest NPV on the bootstrap-

basis and in excess of broad market investing pseudo funds. However, it comes across as

the worst cohort against the small value, suggesting a 38- to 42-cent loss, also signi�cant

statistically. Meanwhile, the 2007-2008 vintages are signi�cantly negative at 68 cents if

bootstrap-corrected but show only a 2- to 11-cent loss to small value.

BO thru the LRR lens Buyout NPVs against the LRR SDFs are 27-36 cents with 8-

cent standard errors but nevertheless above 10% empirical p-values. Full sample excess NPVs

against broad index are smaller but statistically signi�cant 5-7 cents if equally weighted but

show zero to 6 cent loss if size-weighted or against small value. For mostly resolved post-

2000 funds, the performance is positive regardless of the metric and better than for ealier

funds, especially in excess of small value. Depending on the metric and resolution rate,

the best-performing cohort is either 2001�2004 (excess NPVs) or 2005�2006 (bootstrap-

corrected). While bootstrap-corrected NPVs are positive but insigni�cant for the 2007-08

vintages, excess NPVs are negative and statistically signi�cant at 4�11 [3�7] cents versus

market [small value].

BO thru the Habits lens For the habits SDF, we see very mixed results depending

on the sample and the metric. Full sample bootstrap-corrected NPVs are positive 1-1.7

dollars which are signi�cant based on empirical p-values but feature very large standard

errors. In contrast, excess NPVs are near zero and slightly below zero if size-weighted.

Dropping the unresolved funds improves excess NPVs to insigni�cant 14 and 5 cents versus,

respectively broad index and small value. Because of the high sensitivity to the 4qâ��08

NAV assumption, excess NPV analysis for the post-2000 vintages is likely more reliable with

the nearly resolved funds. It suggests historically very good returns around 30-to-40 cents

(yet under wide con�dence intervals) through 2006 and a sharp drop for 2007-2008 vintage

to statistically signi�cant loss of 18 [31] cents against broad market [small value].
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B.3. Generalists

When it looks like a mix of VC and BO NPVs By their self-declared strategy,

generalist funds invest in both venture- and buyout-like deals. We see evidence of that in

some of the NPV analysis per Table VII. In particular, the excess NPVs for the 2001�2008

vintage cohort appear roughly as a 40-60 mix between venture and buyout NPVs for all three

SDFs.

When it does not look like a mix of VC and BO NPVs This pattern does not hold

for 1990-2000 funds, for which the excess NPVs of generalists appear virtually identical to

those of buyouts, and during for the 2007-2008 where generalists signi�cantly underperformed

both venture and buyouts. In the latter cohort, the losses are particularly sharp under the

habit model�tune of 54 cents even for nearly resolved funds for which the drag from low-

valued 4Q 2018 NAVs are not that much of a drag. Nevertheless the bootstrap-corrected

NPV for those funds remain signi�cantly positive at 3.6% and are larger than for buyouts

and venture. This indicates that the timing of funds launches and capital calls has been very

positive, however the timing of the realizations and the level of excess cash �ows have been

lagging those of pseudo funds. A similar pattern for NPVs with LRR SDF, albeit less stark

quantitatively, provides additional support for this explanation.

VII. Conclusion

what we �nd and where methodology can be taken to This paper documents

novel facts about PE fund performance. We compare inference about NPV of investing in

various cohorts of venture, buyout and generalist funds derived from CAPM and the leading

consumption-based asset pricing models. We show that latter may explain the continued in-

terest to venture capital investments by university endowments and pension funds. However,

the methodology that we develop applies beyond these speci�c SDFs, enabling a construc-

tion and calibration of portfolio-speci�c discount factors re�ecting non-tradeable assets and

liabilities, unspanned by publicly-traded assets.

Caveats on sample and measurement issues There are limitations to our analysis.

While our methodology emphasizes robustness, other studies may �nd di�erent results using

conceptually same methods since this approach involves not explicitly observable discount

factors. Furthermore, many funds in our sample are far from being resolved, especially those

incepted after 2005. Thus, some results may change as post-2018 cash �ows are added and

SDF realizations are obtained.
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Table I

Summary statistics

This table reports summary statistics for data used in this study. Panel A describes the sample of venture,
growth equity and buyout funds with cash �ow data from Burgiss, for vintages between 1979 and 2008. We
exclude funds with committed capital below $5 million in 1990 dollars. The means and quartile statistics
are for the for Total Value to Paid-In capital of each fund. Panel B reports the summary statistics at annual
frequency for the log changes in the discount factors (m) considered in this study (log-utility CAPM, Long-
run Risk model, and the Habit formation model); the underlying data used to construct them (U.S. Price-
dividend ratio, 3-month Treasury Bill rate, Moody's BBB to AAA credit spread, U.S. Consumption growth,
U.S. Consumption to Output ratio); and the proxies for the marginal utility for investment returns of selected
PE LPs, University Endowments and State Pension Plans (real growth rates of gifts and contributions
respectively). The sample period is from 1979 through 2018 or earliest availability. Panel C reports yearly
regression results of growth in university endowment gifts on the discount factors in which the dependent and
explanatory variables are standardized and t-statics (reported in parentheses) adjusted for autocorrelation.
Panel D reports the pairwise correlation for selected variables during years 1998-2018.

Panel A: PE funds sample

Vintage
year

Venture Buyouts and Generalists

Fund
count

Equal-weighted TVPI Size-weighted Fund
count

Equal-weighted TVPI Size-weighted

p25 p50 p75 mean TVPI lNAVr∑
Dr

p25 p50 p75 mean TVPI lNAVr∑
Dr

1979-85 109 1.205 1.669 2.378 1.894 1.889 0.02 19 2.141 2.719 3.814 4.076 4.823 0.00
1986 25 1.384 1.583 2.062 2.056 3.156 0.01 10 1.288 1.880 2.504 2.203 2.718 0.02
1987 31 1.154 1.927 2.795 2.206 2.453 0.01 15 1.532 2.119 4.059 2.840 2.213 0.13
1988 30 1.351 1.952 3.108 2.317 2.712 0.01 14 1.544 1.781 2.640 2.153 2.127 0.01
1989 32 1.161 1.888 2.947 2.521 2.700 0.01 16 1.294 2.381 4.151 2.690 3.156 0.01
1990 16 1.790 2.678 4.003 3.140 3.579 0.00 13 1.451 2.146 2.859 2.221 2.320 0.05
1991-92 26 1.547 2.022 3.324 3.348 3.089 0.01 28 1.572 2.701 3.220 2.770 2.827 0.01
1993 24 1.302 2.741 6.130 5.605 6.558 0.00 17 1.545 2.026 2.890 2.428 2.375 0.00
1994 22 1.308 2.966 7.250 6.104 9.914 0.01 40 1.308 1.949 2.728 2.202 3.028 0.03
1995 31 1.823 2.724 6.235 6.368 5.765 0.01 41 1.017 1.774 2.395 2.106 2.073 0.02
1996 22 0.872 2.251 8.116 8.013 10.962 0.01 36 1.084 1.701 2.275 1.763 1.851 0.03
1997 54 1.027 1.803 5.200 7.874 7.210 0.02 66 0.982 1.379 1.806 1.491 1.535 0.04
1998 57 0.604 1.108 1.744 2.290 2.439 0.07 81 1.007 1.504 2.004 1.582 1.528 0.02
1999 110 0.366 0.667 1.106 0.852 0.898 0.15 85 0.886 1.477 2.062 1.462 1.590 0.03
2000 141 0.546 0.764 1.308 0.952 1.026 0.22 113 1.256 1.878 2.471 1.923 2.146 0.03
2001 76 0.630 1.051 1.454 1.232 1.544 0.23 59 1.631 2.420 3.077 2.423 2.552 0.03
2002 28 0.806 1.115 1.580 1.197 1.210 0.11 49 1.688 2.279 2.798 2.343 2.438 0.03
2003 25 0.535 1.102 1.819 1.793 1.719 0.15 46 1.496 2.067 2.845 2.297 2.592 0.03
2004 44 0.591 0.960 1.882 1.629 1.667 0.61 88 1.332 1.881 2.329 1.951 2.000 0.02
2005 82 0.884 1.322 1.857 1.829 2.005 1.08 130 1.181 1.586 2.292 1.755 1.789 0.05
2006 107 0.820 1.436 1.913 1.645 1.669 0.69 173 1.051 1.544 2.012 1.720 1.583 0.11
2007 99 1.119 1.812 2.520 2.237 2.372 1.03 202 1.212 1.568 2.024 1.657 1.725 0.43
2008 90 1.024 1.556 2.838 2.380 2.469 1.32 169 1.204 1.586 2.088 1.636 1.828 0.28

All 1,281 0.800 1.381 2.179 2.377 2.159 0.45 1,510 1.212 1.692 2.326 1.881 1.888 0.15



Table I

Summary statistics�Continued

Panel B: �O�-the-shelf� SDFs and other data, YoY&levels

Univariate Statistics: Correlations with SDF from:

Mean StDev Skew C-C Habit B-Y LRR CAPM

∆.Consumption (log) 0.016 0.012 −0.453 −0.637 −0.797 −0.081
Consum-to-Output ratio 0.616 0.009 0.762 0.088 −0.337 −0.201
Risk Free Rate (real pp) 0.011 0.025 0.120 −0.213 −0.591 −0.245
BBB-AAA spread (pp) 0.010 0.003 1.277 0.364 0.351 0.170
Price-to-Dividend ratio 3.725 0.387 −0.296 −0.189 0.015 0.038

m(C-C Habit) −0.077 0.462 0.904 1.000 0.691 0.347
m(C-C LRR) −0.077 0.388 0.191 0.691 1.000 0.423
m(logU CAPM) −0.077 0.160 1.151 0.347 0.423 1.000

∆.SPP Contributions 0.033 0.052 −0.644 −0.307 −0.340 −0.069
∆.UEd Gifts 0.069 0.035 0.494 −0.044 −0.110 0.041

Panel C: Regressions of ∆.UEd on log SDFs, June YoY

(1) (2) (3) (4) (5) (6)

CAPM −0.508 −0.374 −0.359 −0.327
(−2.19) (−1.77) (−1.53) (−1.47)

C-C Habit −0.480 −0.327 −0.177
(−3.11) (−3.13) (−1.47)

B-Y LRR −0.511 −0.365 −0.266
(−3.49) (−2.59) (−1.59)

N 40 40 40 40 40 40
R2 0.258 0.230 0.261 0.347 0.369 0.387

Panel D: Correlations post-1998, June YoY

(1) (2) (3) (4) (5) (6)

(1) ∆.UEd 1.000
(2) ∆.SPP 0.081 1.000
(3) ∆.Consumption 0.573 0.310 1.000

(5) m(C-C Habit) −0.701 −0.222 −0.803 1.000
(4) m(B-Y LRR) −0.708 −0.428 −0.805 0.829 1.000
(6) m(CAPM) −0.657 −0.135 −0.495 0.581 0.537 1.000



Table II

PE Fund NPVs with �O�-the-Shelf� SDFs

In this table, we conduct inference on the NPV of investing in PE funds against selected SDFs proposed in
the literature, and compare the results with the inference on abnormal performance of public benchmarks
during 1980�2018, which corresponding to the PE fund cash �ows sample. 'K-S CAPM' and 'K-N CAPM'
denote the results based on the SDF series assuming, respectively, the log-utility CAPM (as implied by
the PME method of Kaplan and Schoar, 2005) and the unrestricted CAPM, as estimated in Korteweg and
Nagel (2016). 'B-Y LRR' and 'C-C Habit' denote the results based on Long-run Risks and External Habit
CBAPMs of, respectively, Bansal and Yaron (2004) and Campbell and Cochrane (1999). Columns (1) reports
the NPV estimate as per equation (9) of an average venture fund, whereas column (2) weights fund-level
NPV estimates by fund commitment size. Columns (3) and (4) do so for the buyout funds. Columns (5)
through (7) report the average pricing errors (PxErrs) as de�ned in equation 10 at quarterly frequency for
three publicly-traded portfolios: public market, small growth, and small value. Standard errors adjusted
for autocorrelation are reported in parentheses. The PE fund sample and discount factors are described in
Table I.

PE funds NPVs Quarterly Pricing Errors (PxErrs)

VC mean VC size-
weighted

BO mean BO size-
weighted

Public
Market

Small
Growth

Small
Value

(1) (2) (3) (4) (5) (6) (7)

K-S CAPM 0.269 0.177 0.245 0.194 0.000 -0.005 0.010
(0.16) (0.10) (0.06) (0.05) � (0.00) (0.01)

K-N CAPM -0.144 -0.170 0.105 -0.009 -0.013 -0.023 -0.004
(0.12) (0.13) (0.14) (0.15) (0.01) (0.01) (0.01)

B-Y LRR 3.863 5.785 5.043 6.712 0.007 0.006 0.018
(1.68) (2.41) (1.43) (2.11) (0.02) (0.02) (0.02)

C-C Habit 0.600 0.950 1.583 1.788 0.005 0.002 0.015
(0.18) (0.32) (0.43) (0.51) (0.02) (0.02) (0.02)



Table III

Pseudo fund NPVs

In this table, we evaluate the NPV of hypothetical funds that mimic the actual PE fund cash �ow schedules
by investing in public benchmarks (i.e., Pseudo funds) constructed as in Korteweg and Nagel (2016) during
1980�2018 against selected SDFs proposed in the literature. 'K-S CAPM' and 'K-N CAPM' denote the results
based on the SDF series assuming, respectively, the log-utility CAPM (as implied by the PME method of
Kaplan and Schoar, 2005) and the unrestricted CAPM, as estimated in Korteweg and Nagel (2016). 'B-
Y LRR' and 'C-C Habit' denote the results based on Long-run Risks and External Habit CBAPMs of,
respectively, Bansal and Yaron (2004) and Campbell and Cochrane (1999). In both panels, column 1 [3]
reports the NPV estimate of an average pseudo venture [buyout] fund investing in broad public market index,
whereas column 2 [3]�in small growth [value] portfolio. Columns (5) through (7) report the average pricing
errors (PxErrs) per equation (11) at quarterly frequency for those three publicly-traded portfolios, using the
the net asset values of those pseudo funds (i.e., Pseudo NAVs) to weight the time series of the quarterly
pricing errors. In Panel A, pseudo funds cash �ows and pricing errors are weighted equally, whereas Panel
B � by fund size adjusted for in�ation. The NPVs and pricing errors are per one dollar invested. Standard
errors adjusted for fund life overlaps and autocorrelation are reported in parentheses. The PE fund sample
and discount factors are described in Table I.

Panel A: Equally weighted

Pseudo fund NPVs �pseudo NAVs�-weighted PxErrs

VC invest
PubMkt

VC invest
SmGr

BO invest
PubMkt

BO invest
SmVal

Public
Market

Small
Growth

Small
Value

(1) (2) (3) (4) (5) (6) (7)

K-S CAPM 0.000 -0.037 0.000 0.193 0.000 -0.004 0.009
� (0.03) � (0.08) � (0.01) (0.01)

K-N CAPM -0.113 -0.119 -0.127 0.141 0.001 -0.007 0.011
(0.08) (0.08) (0.05) (0.17) (0.02) (0.01) (0.02)

B-Y LRR 2.777 2.823 3.752 3.906 0.027 0.028 0.037
(1.33) (1.35) (1.24) (1.19) (0.02) (0.02) (0.02)

C-C Habit 0.900 0.924 1.536 1.707 0.018 0.016 0.028
(0.39) (0.45) (0.50) (0.48) (0.02) (0.02) (0.02)

Panel B: Size-weighted

Pseudo fund NPVs �pseudo NAVs�-weighted PxErrs

VC invest
PubMkt

VC invest
SmGr

BO invest
PubMkt

BO invest
SmVal

Public
Market

Small
Growth

Small
Value

(1) (2) (3) (4) (5) (6) (7)

K-S CAPM 0.000 0.002 0.000 0.139 0.000 -0.002 0.010
� (0.01) � (0.06) � (0.01) (0.01)

K-N CAPM -0.066 -0.049 -0.120 0.087 -0.004 -0.010 0.006
(0.09) (0.09) (0.06) (0.14) (0.02) (0.02) (0.02)

B-Y LRR 3.646 3.727 4.683 4.769 0.042 0.044 0.050
(1.69) (1.72) (1.68) (1.63) (0.02) (0.03) (0.02)

C-C Habit 1.304 1.384 2.076 2.236 0.031 0.030 0.037
(0.59) (0.64) (0.71) (0.72) (0.03) (0.03) (0.03)



Table IV

GMM estimation of SDF parameters

This table reports SDF parameter estimates and performance diagnostics via quarterly time series GMM as
described in section VI.A for three asset pricing models�CAPM in Panel A, Long-run Risk model of Bansal
and Yaron (2004) in Panel B, and the Habit formation model of Campbell and Cochrane (1999) in Panel C�
for the PE fund cash �ow sample: 1979�2018. Within each panel, the di�erences across columns derive from
the di�erent weights applied to the pricing error in the respective quarter. The weights are equal in column
(1) and proportional to the PE activity level in the other two column. The PE activity is measured by the
aggregate fund NAVs reported in column (2), and the pseudo fund NAVs (see section IV) in column (3). The
test assets include returns on risk free rate, CRSP value-weighted index, and six size and style portfolios. Only
four assets are included in the parameter estimation though: risk free rate, public market, small growth and
small value. First two rows report the model J-statistic and the associated p-value. The last two rows report
mean and standard deviation of the resulting SDF quarterly series, weighted accordingly. The penultimate
eight rows report mean pricing error by each test asset in basis points per quarter, weighted accordingly. The
remaining rows report the point estimates and robust for heteroskedasticity and autocorrelation standard
errors (in parentheses) for the SDF intercept, a, and the relative risk aversion coe�cient,γ.

Panel A: CAPM Panel B: LRR Panel C: Habit
(1) (2) (3) (1) (2) (3) (1) (2) (3)

J-statistic 11.06 2.86 3.75 9.59 3.32 1.21 9.50 3.31 0.84
p-value 0.004 0.239 0.153 0.008 0.190 0.546 0.009 0.191 0.657

a∗ 0.020 0.017 0.016 -0.079 -0.100 -0.096 -0.042 -0.080 -0.069
(0.014) (0.012) (0.012) (0.009) (0.035) (0.025) (0.002) (0.023) (0.012)

γ∗ 2.54 3.16 2.82 9.27 9.12 9.29 2.08 1.89 1.90
(0.86) (1.14) (1.22) (3.37) (2.40) (2.49) (1.04) (1.40) (1.48)

ρ̂(a, γ) 0.651 0.325 0.562 0.207 0.469 0.653 0.789 0.829 0.911

Risk-free rate -40.9 -5.2 -29.4 -141.1 -164.1 -54.4 -136.8 -141.4 -5.2
Public Market -0.3 -10.7 -25.5 23.6 20.8 -3.0 19.1 15.4 -11.9

Small Growth -83.8 -42.4 -57.1 -12.1 40.2 9.3 -5.0 31.9 10.7
Small Neutral 76.6 63.6 86.3 108.0 108.7 76.8 101.2 99.4 49.6
Small Value 109.9 57.8 110.3 126.0 105.8 59.0 119.4 100.3 7.8

Large Growth 7.1 22.4 9.7 34.9 37.2 -13.8 30.6 32.9 -41.6
Large Neutral 21.5 -2.9 4.9 25.4 19.6 -4.4 18.2 10.7 -24.1
Large Value 41.0 -34.8 -30.7 54.5 25.5 6.1 43.4 24.1 0.2

Ê[M ] 0.9969 0.9999 0.9951 0.9668 0.9454 0.9501 0.9900 0.9503 0.9613
σ̂(M) (0.309) (0.42) (0.352) (0.223) (0.199) (0.208) (0.262) (0.206) (0.218)



Table V

Venture funds performance: CAPM versus CBAPMs

This table reports Net Present Value estimates for venture fund cash �ows described in table I, for the full
sample (row `All') and by selected vintage year groups. The number of funds in each group is indicated in
column (1). The NPV is in dollars per dollar of capital committed. Panels A and C equally weight fund
cash �ows, Panel B � weights by the in�ation-adjusted fund size. Panel C additionally restricts the sample
to funds with in�ation-adjusted distributions at least three times greater than the latest reported NAV.
Columns (2) and (3) report K-N GPME for, respectively, the log-utility (as in K-S PME) and unrestricted
CAPM cases. The rest of the columns report bias-corrected NPV estimates against SDFs implied by three
models�CAPM, Long-run Risk, and External Habit�estimated as per section V.C. Columns (4)�(6) apply
bootstrap correction (section V.B.2), while other columns subtract the NPV or pseudo funds investing in
CRSP value-weighted index (columns 7�9) and Fama-French small growth (columns 10�12). The estimates
statistically signi�cant at 5% [10%] are superscripted with a [b], see Appendix.A4 for detail.

GPME NPV ∆NPV(mkt) ∆NPV(�6)
Vintage Funds KS KN CAPM LRR Habit CAPM LRR Habit CAPM LRR Habit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: All funds equally weighted
<1990 227 -0.12b -0.40b -0.44a -0.20a -0.07a -0.06a -0.04b -0.05a 0.03 -0.02 0.01

(0.07) (0.21) (0.11) (0.01) (0.02) (0.02) (0.01) (0.01) (0.03) (0.00) (0.00)

1990-00 503 0.74b 0.39 0.05 -0.08a -0.07a 0.07 0.24a 0.17a 0.06 0.24a 0.17a

(0.43) (0.47) (0.32) (0.05) (0.08) (0.11) (0.04) (0.06) (0.12) (0.04) (0.06)

2001-08 550 0.00 -0.77a -0.49a 0.38a 1.35 -0.08a -0.06a -0.37a -0.10a -0.08a -0.44a

(0.03) (0.34) (0.27) (0.07) (4.77) (0.03) (0.01) (1.85) (0.03) (0.01) (2.13)

1990-95 119 1.08a 0.14 -0.24 -0.06a -0.11a 0.29 0.19a 0.23a 0.37 0.21a 0.27a

1996-00 384 0.63a 0.47 0.13 -0.09a -0.06a 0.00 0.26a 0.15a -0.04b 0.25a 0.14a

2001-04 172 -0.13 -0.25 -0.17a 0.14a 0.60 -0.16a -0.06a -0.08a -0.19a -0.07a -0.10a

2005-06 189 -0.04 -0.74b -0.46a 0.50a 2.08b -0.10a -0.10a -0.47a -0.13a -0.12a -0.55a

2007-08 189 0.16b -1.27a -0.86a 0.51 1.43 0.02 -0.03 -0.53a 0.00 -0.06a -0.65a

All 1,280 0.27 -0.20 -0.24 0.07a 0.47 -0.02 0.06a -0.10a -0.02 0.06a -0.12a

(0.16) (0.14) (0.26) (0.05) (2.07) (0.05) (0.02) (0.81) (0.06) (0.02) (0.94)

Panel B: All funds size-weighted
<1990 227 -0.04 -0.37b -0.43a -0.16a -0.07a -0.06a -0.04a -0.06 0.02 -0.03 -0.01
1990-00 503 0.41b 0.29 0.04 -0.08a -0.06a -0.10a 0.14a 0.08a -0.14a 0.13a 0.07a

2001-08 550 0.06 -0.69b -0.48a 0.38 1.47 -0.04b -0.04b -0.30a -0.07a -0.06a -0.37a

1990-95 119 1.33a 0.23 -0.22 -0.06a -0.11a 0.35 0.21a 0.26a 0.42 0.24a 0.29a

1996-00 384 0.29 0.29 0.06 -0.08a -0.05a -0.16a 0.13a 0.05a -0.22a 0.11a 0.04a

2001-04 172 -0.06 -0.05 -0.15 0.12a 0.53 -0.07a -0.04a 0.00 -0.10a -0.05a -0.01
2005-06 189 0.00 -0.75b -0.46a 0.51 2.27b -0.09a -0.08a -0.41a -0.13a -0.11a -0.51a

2007-08 189 0.22b -1.24b -0.85a 0.54 1.71 0.05 0.01 -0.47a 0.03 -0.01 -0.59a

All 1,280 0.18b -0.15 -0.23 0.12a 0.62b -0.07a 0.03b -0.12a -0.09a 0.02 -0.16a

(0.10) (0.24) (0.29) (0.05) (3.08) (0.05) (0.01) (0.90) (0.06) (0.01) (1.05)

Panel C: Nearly resolved funds, equally weighted
2001-08 355 0.02 -0.48a -0.35a 0.35 1.36b -0.02 0.01 0.07 -0.06a -0.01 0.00

2001-04 153 -0.13 -0.27a -0.13a 0.13a 0.57 -0.13a -0.05a -0.04b -0.16a -0.06a -0.05a

2005-06 119 0.06 -0.41b -0.35b 0.52 2.24a 0.02 -0.01 0.01 -0.02 -0.03b -0.08a

2007-08 83 0.24b -0.97b -0.84a 0.55b 1.82b 0.12 0.15a 0.37 0.08 0.11a 0.22

All 1,069 0.34a -0.07 -0.14 0.02 0.36a 0.04 0.11a 0.10 0.04 0.11a 0.09a

(0.17) (0.11) (0.25) (0.05) (2.43) (0.05) (0.02) (0.13) (0.07) (0.02) (0.08)



Table VI

Buyout fund performance: CAPM versus CBAPMs

This table reports Net Present Value estimates for buyout fund cash �ows described in table I, for the full
sample (row `All') and by selected vintage year groups. The number of funds in each group is indicated in
column (1). The NPV is in dollars per dollar of capital committed. Panels A and C equally weight fund
cash �ows, Panel B � weights by the in�ation-adjusted fund size. Panel C additionally restricts the sample
to funds with in�ation-adjusted distributions at least three times greater than the latest reported NAV.
Columns (2) and (3) report K-N GPME for, respectively, the log-utility (as in K-S PME) and unrestricted
CAPM cases. The rest of the columns report bias-corrected NPV estimates against SDFs implied by three
models�CAPM, Long-run Risk, and External Habit�estimated as per section V.C. Columns (4)�(6) apply
bootstrap correction (section V.B.2), while other columns subtract the NPV or pseudo funds investing in
CRSP value-weighted index (columns 7�9) and Fama-French small value (columns 10�12). The estimates
statistically signi�cant at 5% [10%] are superscripted with a [b], see Appendix.A4 for detail.

GPME NPV ∆NPV(mkt) ∆NPV(�6)
Vintage Funds KS KN CAPM LRR Habit CAPM LRR Habit CAPM LRR Habit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: All funds equally weighted
<1990 54 0.35 0.01 -0.38a -0.12a -0.08 0.21a 0.06a 0.10a 0.16a 0.05a 0.05a

(0.23) (0.06) (0.18) (0.01) (0.03) (0.06) (0.01) (0.01) (0.04) (0.01) (0.01)

1990-00 350 0.34a 0.50a 0.79a -0.03b -0.03b 0.62a 0.06a 0.03b -0.33a -0.04a -0.06
(0.14) (0.19) (0.29) (0.02) (0.08) (0.08) (0.01) (0.01) (0.10) (0.01) (0.04)

2001-08 706 0.19a -0.18 -0.19 0.51 1.80b 0.20a 0.05a 0.06 0.16a 0.03 -0.02
(0.05) (0.36) (0.25) (0.10) (8.40) (0.04) (0.01) (0.35) (0.04) (0.01) (0.42)

1990-95 96 0.11b -0.08 -0.12a -0.07a -0.13a 0.05a 0.03 0.03b -0.09 0.01 0.01
1996-00 254 0.43a 0.72a 1.17a -0.01 0.01 0.83a 0.07a 0.03b -0.42a -0.06a -0.08
2001-04 194 0.55a 1.17a 0.31b 0.31 0.94 0.62a 0.24a 0.43 0.50a 0.18a 0.37
2005-06 234 0.14 0.11 -0.02 0.69 2.88a 0.15a 0.07a 0.28 0.13a 0.06a 0.24
2007-08 278 -0.03b -1.35a -0.76a 0.54 1.62b -0.04b -0.09a -0.40a -0.06a -0.11a -0.52a

All 1,110 0.24a 0.48 0.16 0.28 1.03a 0.33a 0.05a 0.05 0.00 0.01 -0.03b

(0.06) (0.30) (0.25) (0.07) (5.37) (0.05) (0.01) (0.22) (0.01) (0.01) (0.26)

Panel B: All funds size-weighted
<1990 54 0.27 -0.01 -0.35a -0.11a -0.07a 0.17a 0.06a 0.06a 0.14a 0.05a 0.01
1990-00 350 0.42a 0.62a 0.89a -0.02 -0.01 0.72a 0.07a 0.04a -0.32a -0.05a -0.06a

2001-08 706 0.14a -0.32 -0.18 0.55 1.98a 0.07 0.00 -0.09a 0.02 -0.03 -0.18a

1990-95 96 0.16b -0.04 -0.09a -0.07a -0.12a 0.07a 0.04b 0.04b -0.07 0.02 0.02
1996-00 254 0.48a 0.77a 1.15a -0.01 0.02 0.87a 0.07a 0.05a -0.38a -0.06a -0.07a

2001-04 194 0.61a 1.16a 0.32 0.29 0.88 0.62a 0.26a 0.49 0.50a 0.20a 0.44
2005-06 234 0.06 0.01 0.09 0.73 3.07a -0.03b -0.01 0.12 -0.06a -0.03 0.07
2007-08 278 0.00 -1.27a -0.68a 0.57 1.71b -0.09a -0.11a -0.54a -0.11a -0.13a -0.67a

All 1,110 0.19a 0.30 0.12 0.36 1.30a 0.23a 0.02 -0.06a -0.06a -0.03b -0.14a

(0.05) (0.34) (0.27) (0.08) (7.01) (0.06) (0.01) (0.41) (0.04) (0.01) (0.72)

Panel C: Nearly resolved funds, equally weighted
2001-08 648 0.22a -0.09 -0.15 0.52 1.83a 0.25a 0.09a 0.19 0.20a 0.06a 0.11

2001-04 191 0.57a 1.10a 0.32b 0.31 0.94 0.64a 0.24a 0.44 0.51a 0.19a 0.38
2005-06 222 0.16 0.13 -0.01 0.69b 2.90a 0.17a 0.09a 0.37 0.16a 0.08a 0.33
2007-08 235 0.01 -1.26a -0.73a 0.55 1.70a 0.00 -0.04a -0.18a -0.02 -0.07a -0.31a

All 1,049 0.27a 0.49b 0.20 0.27 1.02a 0.37a 0.08a 0.14 0.02 0.03 0.05
(0.05) (0.27) (0.26) (0.07) (5.74) (0.05) (0.02) (0.58) (0.01) (0.01) (0.34)



Table VII

Generalist fund performance: CAPM versus CBAPMs

This table reports Net Present Value estimates for cash �ows funds classi�ed as `generalists' (see table I), for
the full sample (row `All') and by selected vintage year groups. The number of funds in each group is indicated
in column (1). The NPV is in dollars per dollar of capital committed. Panels A and C equally weight fund
cash �ows, Panel B � weights by the in�ation-adjusted fund size. Panel C additionally restricts the sample
to funds with in�ation-adjusted distributions at least three times greater than the latest reported NAV.
Columns (2) and (3) report K-N GPME for, respectively, the log-utility (as in K-S PME) and unrestricted
CAPM cases. The rest of the columns report bias-corrected NPV estimates against SDFs implied by three
models�CAPM, Long-run Risk, and External Habit�estimated as per section V.C. Columns (4)�(6) apply
bootstrap correction (section V.B.2), while other columns subtract the NPV or pseudo funds investing in
CRSP value-weighted index (columns 7�9) and Fama-French small value (columns 10�12). The estimates
statistically signi�cant at 5% [10%] are superscripted with a [b], see Appendix.A4 for detail.

GPME NPV ∆NPV(mkt) ∆NPV(�6)
Vintage Funds KS KN CAPM LRR Habit CAPM LRR Habit CAPM LRR Habit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: All funds equally weighted
<1990 20 0.05 -0.25 -0.46a -0.14a -0.01 0.00 -0.02 -0.02 -0.07a -0.04b -0.08a

(0.04) (0.16) (0.15) (0.00) (0.03) (0.02) (0.00) (0.00) (0.00) (0.01) (0.02)

1990-00 170 0.23b 0.25a 0.83b -0.04b -0.04b 0.24a 0.04b 0.03 -0.88a -0.07a -0.07
(0.14) (0.12) (0.28) (0.02) (0.07) (0.03) (0.01) (0.01) (0.16) (0.02) (0.05)

2001-08 210 0.06 -0.26 -0.22 0.70a 2.63a 0.08a -0.04a -0.21a 0.04 -0.06a -0.29a

(0.04) (0.26) (0.24) (0.09) (8.68) (0.02) (0.01) (0.74) (0.02) (0.01) (1.26)

1990-95 43 0.35a -0.03 -0.19a -0.04a -0.10a 0.11 0.05a 0.06a 0.00 0.04b 0.04b

1996-00 127 0.19a 0.34a 1.17a -0.04b -0.02 0.29a 0.03b 0.01 -1.18a -0.10a -0.11
2001-04 48 0.38a 0.78a 0.38 0.35 1.18 0.46a 0.16a 0.42 0.34a 0.11a 0.37
2005-06 69 0.15 0.09 0.04 0.85 3.63a 0.15a 0.07a 0.37a 0.13b 0.06a 0.33b

2007-08 93 -0.17a -1.05a -0.76a 0.80a 2.75a -0.17a -0.23a -0.97a -0.18a -0.25a -1.09a

All 400 0.13a 0.11 0.26 0.31a 1.25a 0.15a -0.01 -0.10a -0.36a -0.06a -0.19a

(0.05) (0.15) (0.25) (0.05) (4.58) (0.03) (0.01) (0.39) (0.06) (0.01) (0.68)

Panel B: All funds size-weighted
<1990 20 0.09 -0.20 -0.42a -0.10a 0.01 0.03 -0.01 0.01 -0.05a -0.03b -0.06a

1990-00 170 0.42a 0.56a 0.97a -0.03 -0.01 0.65a 0.06a 0.07b -0.56a -0.06a -0.04b

2001-08 210 0.05 -0.43 -0.23b 0.73 2.91b -0.01 -0.10a -0.56a -0.07a -0.13a -0.68a

1990-95 43 0.81a 0.22 -0.16 -0.05a -0.11a 0.24 0.11a 0.12a 0.14 0.10a 0.11a

1996-00 127 0.35a 0.62a 1.18a -0.02 0.01 0.72a 0.05a 0.06 -0.69a -0.09a -0.06a

2001-04 48 0.43a 0.95a 0.41 0.24 0.78 0.49a 0.14a 0.47 0.30b 0.07a 0.40
2005-06 69 0.18b 0.30 0.35 0.89b 3.57a 0.07 0.09a 0.65 0.05 0.09a 0.67
2007-08 93 -0.18a -1.40a -0.87a 0.86a 3.49b -0.26a -0.30a -1.68a -0.29a -0.33a -1.91a

All 400 0.20a 0.29 0.30 0.37a 1.54b 0.25a -0.03b -0.29a -0.27a -0.10a -0.41a

(0.08) (0.32) (0.31) (0.06) (4.96) (0.07) (0.01) (2.22) (0.03) (0.02) (2.71)

Panel C: Nearly resolved funds, equally weighted
2001-08 170 0.16a -0.08 -0.04 0.78 3.12a 0.19a 0.04a 0.14 0.14a 0.02 0.05

2001-04 44 0.43a 0.71a 0.38 0.37 1.24 0.54a 0.19a 0.49 0.42a 0.14a 0.44
2005-06 62 0.23 0.12 0.20 0.95b 4.16a 0.22a 0.12a 0.59a 0.19b 0.11a 0.53b

2007-08 64 -0.08b -0.81a -0.58a 0.94 3.65a -0.08a -0.12a -0.54a -0.10a -0.15a -0.68a

All 357 0.19a 0.16 0.43 0.31a 1.34a 0.21a 0.04b 0.08 -0.34a -0.02 -0.01
(0.04) (0.11) (0.26) (0.06) (5.56) (0.04) (0.01) (0.40) (0.06) (0.00) (0.19)



Figure 1. PE fund sample
This �gure plots the aggregate net asset values reported by 2,750 private equity funds incepted between 1979
and 2008. See table I for sample description.
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Figure 2. Long-term changes for o�-the-shelf SDFs

This �gure plots rolling 6-year log changes in the SDFs implied by models calibrated as in the literature.
Panel A graphs the series at a semiannual, Panel B breaks down the returns in the CBAMP SDFs by source
of innovation.
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Figure 3. PE pseudo funds
This �gure describes the size and cash �ow dynamics of 2,750 PE funds incepted between 1979 and 2008
(see table I for details). Panel A plots the aggregate market value of PE mimicking portfolios (i.e., pseudo
funds), constructed as in Korteweg and Nagel (2016), in in�ation-adjusted US dollars and scaled by CRSP
index market value. The dates of all cash �ows and the size of capital calls of each pseudo fund are set equal
to those of the respective actual fund. Unlike the actual funds, the pseudo funds invest in public market
index. The size of a pseudo fund distribution is a fraction of its asset value right before the distribution.
This fraction is determined by a �xed rule that re�ects the time elapsed since the previous distribution and
the fund age. Panel B plots the aggregate distributions of the pseudo funds and the actual funds, as well
the aggregate capital calls and the last reported NAV (assumed to be the terminal distributions).
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Figure 4. Key �ndings
This �gure graphs the main �ndings of this study. The bars are the estimates of expected NPV per dollar
invested in, respectively, venture, generalist and buyout funds according to two types of asset pricing models:
CAPM and consumption-based ones. Log Utility CAPM corresponds to the assumption implied in the
computation of PME of Kaplan and Schoar (2005), whereas Unrestricted CAPM builds on the method of
Korteweg and Nagel (2016). Long-run Risk and External Habit formation models are of Campbell and
Cochrane (1999) and Bansal and Yaron (2004) respectively. The NPV is bias-adjusted using pseudo funds

investing in public markets. The sample is described in table I and includes substantially resolved funds only.
See panel C of tables VII, VI, and VII for additional detail. The estimates reported in this �gure correspond
to those in columns (2) and (7) through (9).



Figure 5. PE fund performance in excess of public equity
This �gure plots PE fund Net Present Values by vintage year against the log-utility GPME (i.e., K-S PME
expressed as di�erence rather than ratio), the discount factors implied by unrestricted CAPM, the Long-run
Risk, and the Habit formation models adjusted for the NPV of similarly timed public investments for the
sample of nearly resolved venture and buyout funds�ie., with in�ation-adjusted distributions at least three
times greater than NAV reported as of Q4 2018. Panel A1 [A2] reports results net of value-weighted CRSP
index for venture [buyout], Panel B1 [B2] - Fama-French small growth [value] stocks. NPVs are in dollars per
dollar of commitment capitall and equally weighted across funds. See table I for sample description. Each
vintage group features at least 40 funds.

Panel A1. Venture VS public market Panel A2. Buyout VS public market

Panel B1. Venture VS small growth Panel B2. Buyout VS small value
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Appendix A. Additional details on methodology

Appendix A1. Proofs

PROPOSITION 1 (Compounding Bias): The NPV-based test per 15 is biased relatively to the

returns-based test 14 even if the SDF is exponentially a�ne. The magnitude and direction of the

bias are not explained by the duration of the funds alone but also depend on the compounding of

pricing errors.

Proof. Consider a population of 3-period funds with perfectly overlapping lives that make a single
capital call of $1 in the beginning of the �rst period, earn Ri1, Ri2, and Ri3 gross return on their
assets during the �rst, second, and third, and distribute all capital in the end of the third period .
The SDF realization are, respectively, M1, M2, and M3.

Plugging z0 = z1 = z2 = 1, δi0 = −1, δi1 = 0, δi2 = 0, δi3 = 1 in equations (14�15) and dropping
i superscript to reduce notation clatter, we get the following di�erence between the statistics of the
tests (15) and (14):

NPV biasT=3 :=E[R1R2R3M1M2M3 − 1]− 1

3

(
E[R1M1 − 1] + E[R2M2 − 1] + E[R3M3 − 1]

)
=E[R1M1 ·R2M2 ·R3M3]− 1

3

3∑
k=1

E[RkMk]

=E[(e1 + 1)(e2 + 1)(e3 + 1)]−
∑3

k=1 E[ek]

3
− 3

3

=E[e1e2e3 + e1e2 + e1e3 + e1 + e2e3 + e2 + e3 + 1]−
∑3

k=1 E[ek]

3
− 1

=
2

3

3∑
k=1

E[ek] + E[e1e2e3] + E[e1e2] + E[e1e3] + E[e2e3].

Similarly, for a 4-period funds, the inference bias is:

NPV biasT=4 :=
3

4

4∑
k=1

E[ek]+

+ E[e1e2e3e4] + E[e1e2] + E[e1e3] + E[e1e4] + E[e2e3] + E[e2e4] + E[e2e5]+

+ E[e1e2e3] + E[e1e2e4] + E[e2e3e4] + E[e2e3e5]

, and for a more general case of T -periods funds,

NPV biasT :=
(T − 1)

T

4∑
k=1

E[ek]+ �duration di�erence (A.1)

+ E[

T∏
k=1

ek] +
1

2
E[

T∑
k=1

T∑
j 6=k

ekej ] + E[

T−2∑
n=3

Ce(T − 1, n)] �compounding error

, where Ce(T, t) demotes a permutation term, e.g., Ce(5, 4) = e1e2e3e4 + e1e2e3e5 + e1e2e4e5 +
e1e3e4e5 + e2e3e4e5.
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With not fully overlapping fund lives and interim distributions, ek-terms simply get scaled by
the cross-sectional expectation of δit, which can also be autocorrelated and cross-autocorrelated
with ek. See Table AI for simulation-based evidence.

PROPOSITION 2 (Cash �ow-based moments equivalence): The benchmark NPV restriction per 18

is equivalent to the benchmark return restriction 12, in which the instrument, zt, is either less

e�cient or correlated with the pricing error, eBt+1.

Proof. Using the mapping de�nition per 18, rewrite the expectation of NPV (θCB)bi as follows:

E[NPV B
i (θCB)] =E

[ T (i)∑
t=s(i)

Cbit

t∏
τ=s(i)

Mτ(θCB)

]
=E
[
z′t−1(Rbt ·Mt(θCB)− 1) · cM−t−1(θCB) · δ̃t

]
=E
[
z′t−1e

b
t(θCB)] · E[δ̃t] · E[cM−t (θCB)]+ (A.2)

+ cov
(
z′t−1e

b
t(θCB) , δ̃t

)
· E[cM−t−1(θCB)] + cov

(
z′t−1δ̃t · ebt(θCB) , cM−t−1(θCB)

)
, where z′t is the average NAVs of pseudo funds which life spans over period t (≡ I(t)):

z′t =

i∈I(t)∑
i

(
− Cbi0

t∏
τ(i)=1

Rbτ(i)(1− δ̃τ(i))

)
/|I| , (A.3)

and cM−t (θCB) is the cumulative SDF innovation through period t since the average sample fund
inception:

cM−t (θCB) =

i∈I(t)∑
i

( t∏
τ=s(i)

Mτ(θCB)

)
/|I| . (A.4)

From expression A.2 it follows that, given a valid instrument z′t (i.e., which does not condition on
the information set when pricing errors are realized), the 'pseudo funds'-based identi�cation scheme
exhibits a loss of e�ciency relatively to expression (12) because it features the covariance terms of
the pricing error of the pseudo funds with their distribution intensity and the SDF history. The
identi�cation of θ via expression (12) is equivalent to that via (18) for zt = z′t ·m(θCB)−t · δ̃t+1 which
potentially fails the orthogonality condition, E[zt, e(θCB)t] = 0, and exhibits additional variation
that is theoretically uninformative of θ. Therefore, θCB is not equal to θB due to either noise or
bias, whereby the latter can be present even asymptotically for some δ̃t or m(θCB)−t that result in
non-zero covariance with the pricing error. In other words, for a given z′t, one cannot improve upon
the sample counterpart of expression (12) in estimating SDF parameters, so θCB is at most as good
an estimate of true θ as θB but strictly worse at least for some choice ofMt(θ) and δ̃t. See Table AII
for simulation-based evidence.

PROPOSITION 3 (Benchmark choice con�ict): Given a mapping function δ̃it, the excess NPV

test (20) performed at θB is less biased and more e�cient than the NPV-test (15) or the excess

NPV test (20) at θCB.

Proof. The intuition is that Korteweg and Nagel (2016) GPME is a weighted average excess NPV
over the selected pseudo fund NPVs. To see this, consider an overidenti�ed system whereby number
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of benchmark exceeds the dimension of SDF parameter vector θ, and one of the pseudo funds invests
in risk-free rate, rf :

GPME(θ) =NPV(θ) −
(
wrf ·NPV(θ)rf +

∑
b6=rf

wb ·NPV(θ)b
)

, where
∑
b 6=rf

wb + wrf = 1 (A.5)

and parameters θ are chosen so that the squared NPVs of pseudo funds are jointly minimized, while
each being a�ected by the compounding error as discussed in PROPOSITION 1. This implies that
the bias correction through GPME puts non-zero weight on NPV(θ)rf . The latter re�ects pricing

error series e(θ)rft which are the least correlated with those of the actual PE funds, e(θ)t, and, thus,
are more likely to exhibit a di�erent compounding error than that in PE funds' NPV estimates
(provided that SDF innovations, returns of risky assets and PE funds, indeed have a signi�cant
common factor). Meanwhile, the fact that θCB is further away from true parameter values than θB
(PROPOSITION 1) adds additional noise to inference about excess NPV (see Table AIII).

Appendix A2. Simulations

Setup. Our data generating process nests the one considered in Korteweg and Nagel (2016)
when the SDF persistence parameter, ρ, equals zero and the benchmark assets are the risk free rate
(rf,t = (1− ρ)rf + ρft−1) and the risk factor(s) ft that drive SDF itself:

ft = (1− ρ)
(
rf +

γσ2

1− ρ
− σ2

2(1− ρ)

)
+ ρft−1 + σεt

= rf,t + γσ2 − σ2

2
+ σεt, and εt ∼ N (0, 0.152 p.a.)

(A.6)

Assuming that the log-SDF,mt = at+bft, perfectly prices ft and rf,t, such that Et−1[exp(rf,t) exp(mt)] =
1 and Et−1[exp(ft) exp(mt)] = 1, one can solve for SDF parameters a = E[at] and b (a, b ∈ θ):

b = γ , at = (γ − 1)rf,t +
γσ2

2
(γ − 1)

E[at] = (γ − 1)

(
rf +

ργσ2

1− ρ
− ρσ2

2(1− ρ)

)
+
γσ2

2
(γ − 1) .

(A.7)

To model non-tradeable SDFs, we consider risky benchmarks that are a�ne in the risk factor:
rbt = ft + ubt, where ubt ∼ N (0, σ2

u).A-1 We assume that the �rst risky benchmark has a σu of 0.1
per year which can be interpreted as the idiosyncratic return relatively to the factor. If additional
benchmarks are used in estimation, their σu are equal to 0.15 per year. As in Korteweg and Nagel
(2016), rf is set 2.5% per year and the PE funds return process is de�ned similarly to that if the
benchmarks' with σ = 0.25 per year and is 0.1-correlated across funds.

We consider several hypothetical fund samples: (i) Very Large: 2,500 funds equally spread over
500 vintage years to gauge the asymptotic properties, (ii) Large: 2,500 funds equally spread over
50 vintage years as considered in the simulations by Korteweg and Nagel (2016), (iii) Realistic: 30

A-1 Notably under the non-treadable SDF, the NPV-estimate of investing is public benchmark is not nec-
essarily equal to zero due to a sampling error in ubt, even for the just-identi�ed case with ρ = 0.
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vintages unequally (i.e., �sparsely�) populated consistent with the actual sample of venture funds
as reported in Table I. The simulated funds make on average 20 distributions of (future values of)
the equal fraction of capital invested in quarter 0. The distributions are uniformly distributed over
a maximum of 44 quarters. This implicitly de�nes the returns-to-cash �ow mapping function δit
(equation 16) as the fund since-inception returns scaled by a random number.

To implement the feasible bootstrap procedure (section V.B.2), we assume that feasible high-
frequency PE pricing errors represent either a 1-period or 4-period moving averages of the true
pricing errors. This assumptions is consistent with the time-series of PE fund returns based on the
as-reported NAVs exhibiting signi�cant time-series persistence even after standard �unsmoothing
techniques� are applied (see, e.g., Goetzmann, Gourier, and Phalippou, 2018). Unless explicitly
stated otherwise, we use the risky benchmark with the smallest idiosyncratic return relative to the
factor�thus. by construction, relative to the PE funds returns as well�for excess NPV computation
(section V.B.1). The intuition here is that one can ex-ante determine a publicly traded asset that
is most related to the PE group of funds of interest (e.g., 'small growth' equities for venture, 'small
value' for buyouts). At the same time, we seek to mimic the reality where other publicly traded
assets are observable and informative of the SDF process, even though they are less related to the
return generating process of PE funds.

In-line with CBAPMs' data limits, we simulate and conduct estimations at quarterly frequency,
assume ρ = 0.2 per annum for autoregressive SDF cases, and assume that the measurement error
is MA(2):{0.50,0.25} for the SDF with measurement error cases.A-2

Discussion. Table AI illustrates PROPOSITION 1. Each panel reports median, mean, and
root mean squared errors for NPV estimates across the simulated PE fund samples when SDF
parameters are estimated consistently. Panel A reveals that, regardless of whether the SDF is
spanned (i.e., tradeable) or unspanned by the public benchmarks, the NPV-based test (15) reported
in column (1) is biased even when the sample is practically infeasible (2,500 funds over 50 years).
The median bias of negative 3 cents per dollar (i.e., on the same order as the point estimates in
the literature) switches to positive 5 with a 3-fold increase in RMSE (from 15-19 to 42) if there is
positive autocorrelation in the measurement error on the SDF, arguably present with macro time
series.A-3 The remaining columns of Panel A indicate a substantial improvement in both the bias
and e�ciency of the estimates once the suggested bias-correction methods are applied. In particular,
both the excess NPV and Bootstrapped-NPV estimates are centered much closer to the true values
while exhibiting signi�cantly smaller variance in the estimates. The improvements in RMSEs are
particularly notable with the bootstrap method where they drop by 40-65%. It also follows that
bootstrap performance is not sensitive to assumptions regarding how smooth the feasible time series
of PE pricing errors are: columns 2 and 3 are virtually identical.

Meanwhile, Panels B and C of Table AI show that (i) the magnitude of the compounding bias
increases as the sample shrinks; (ii) all else equal, the bias is stronger when the pricing errors are
not centered at zero in expectation; but (iii) the proposed bias correction methodologies continue to
work. Finally, the RMSE-superior Bootstrapped NPV s appear less robust to misspeci�cation of the
drift in the SDF (i.e. Moving Average of the true innovations) than excess NPV s. This is intuitive
since excess NPV di�erences out the �purely SDF-related� error. Nonetheless, this advantage is
reduced when PE returns exhibit abnormal performance relative to the benchmark (Panel C).

Table AII illustrates PROPOSITION 2 by contrasting parameter identi�cation via time series

A-2 We �nd similar e�ects in unreported analysis of di�erent speci�cations between MA(1) and MA(3).
A-3 In untabulated analysis, we �nd the magnitude of compounding bias increasing to 7-13 cents at a single
vintage level, depending on vintage size and SDF type.
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GMM (i.e., θB per equation 12) in columns (1) with that using the pseudo fund cash �ows (i.e.,
θCB per equation 18). The latter also requires taking a stand on the mapping function between the
benchmark returns and pseudo fund cash �ows (δ̃it per equation 19). In column (2), we assume the
true mapping function (i.e. fund distribution rule) is known to econometrician, hence, δ̃it = δit for
all i and t. Nonetheless, Panel A suggests that asymptotically�unlike in column (1)�the SDF slope
parameter per column (2) is not centered at the true value even if the risk-factor underlying the
SDF is a known tradeable portfolio. Moreover, as column (4) indicates, the approximate mapping
function proposed by Korteweg and Nagel (2016) (henceforth, K-N δ̃it

A-4) notably outperforms the
true one in terms of both central tendency and the variance of the bias. Equation (A.2) reveals
the reason for this surprising result�even though using true mapping function better matches the
cash �ow durations of pseudo funds with those of PE (untabulated), K-N δ̃it reduces the correlation
between the distribution size and the period t pricing error, thus, mitigating the cov

(
z′t−1e

b
t(θCB), δ̃t

)
-

term introduced by the instrument that the cash �ow based identi�cation of θ implies. To highlight
this e�ect further, consider column (3), in which we set δ̃t to equal the per period benchmark return
whenever the distribution is non-zero�the upward bias increases, especially when the fund sample
is shorter and less balanced as panels B and C of Table AII demonstrate. Notably, the asymptotic
bias (Panel A) in the slope estimate switches to being negative and large with the autoregressive
SDFs. This is due to the cov

(
z′t−1δ̃t · ebt(θCB), cM−t−1(θCB)

)
-term in equation (A.2). Interestingly,

autocorrelation in the SDF appears to mitigate the δ̃t-related bias in �nite samples (Panels B and
C). Still RMSEs under the θCB-approaches are at least twice as high with realistic samples than
under the θB-approach. In other words, the GMM instrument implied by the pseudo fund cash
�ows is inferior relative to the optimal instrument.A-5

Table AIII illustrates PROPOSITION 3 by comparing excess NPV estimates under θB with
those under θCB for a Realistic sample across di�erent mapping functions. The key pattern that
emerges in each panel (i.e., regardless of the mapping function) is that the error on ∆NPV rf is
always smaller under θCB while ∆NPV against the risky benchmark tends to be smaller (and
better centered) under θB with exception of RMSEs with autoregressive SDFs. However, Figure AI
provides insights into why focusing on 'RMSE'-alone can be misleading in those cases. From Panel
A, the estimates from the θCB-approach are much more likely to result in very large estimates of
the intercept as GMM struggles to price the compounding bias in pseudo-fund NPVs towards zero.
Consequently, all cash �ows tend to have present values biased towards zero, as do the di�erences
thereof plotted in Panel B. This panel shows that excess NPV s tend to be small for those implausibly
large intercept values. While this trend suppresses RMSEs, the power of θCB-based NPV estimates
su�ers as we explore in the Internet Appendix.

Comparing across panels of Table AIII, we note that ∆NPV(θB) is not particularly sensitive
to misspeci�cation in the mapping function δit�K-N δ̃it returns similar estimation errors to the
true mapping. We propose a slight modi�cation to K-N δ̃it which amounts to dropping the �rst
component (i.e., �the return accumulated since the last cash �ow date�) per the description in
footnote A-4 and results in equation (27). Results based on this δ̃it are reported in Panel C. In
unreported analysis, we �nd that this mapping function exhibits better robustness under more
general DGPs, larger pricing errors on benchmark assets, and for bootstrapped-NPVs (Table AI).

A-4 p.1446: �If fund i makes a payout at t + h(j), then we assume that the benchmark funds also make a
payout equal to the sum of two components. The �rst component is equal to the return accumulated since
the last cash �ow date, t+ h(j − 1). The second component pays out a fraction π(j) of the capital that was
in the benchmark fund after the last cash �ow at t+ h(j − 1) occurred. The payout ratio is determined by
π(j) = min

(
(h(j)− p)/(10− p)

)
, where p is the time ... of the most recent payout prior to t+ h(j).�

A-5 The DGP considered in this appendix implies that the optimal instrument is a constant.
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Table AI

Simulation Evidence�NPV compounding bias
This tables illustrates PROPOSITION 1 by reporting summary statistics for the NPV estimation er-
ror across 5,000 independent simulations. In each simulation, the error is de�ned as a di�erence in
cents per dollar of capital committed between the estimate and the true life-time fund NPV (0 in panels
A and B, 19 cents in panel C). Each panel reports median, mean and mean squared root error for three SDF
types 'Tradeable','Non-Treadeable' (so that benchmarks do not contain SDF itself), and 'MA(2) Meas.Error'
(so that SDF is observed with an error that exhibits persistence). In each case, SDF parameters are esti-
mated consistently (equation 12, θB). Columns (1) report NPV estimates based on (equation 16), and
hence not adjusted for compounding error, columns (2) and (3) perform feasible bootstrap correction (sec-
tion V.B.2) under di�erent assumption about time-series properties of the observed PE returns. Columns (4)
report excess NPV estimates (section V.B.1) as an alternative correction method for the compounding error

and general misspeci�cation of the SDF. The seed values are �xed across and within panels. Appendix.A2
describes the simulation setup and discusses results.

Panel A. True NPV is 0, Large sample: 50 balanced vintage years

Raw Feasible Bootstrap Excess

NPV et(θ) MA(1) et(θ) MA(4) NPV

(1) (2) (3) (4)

Median Error -2.74 -0.27 -0.20 -0.79
Tradeable SDF Mean Error -1.68 0.47 0.50 0.09

RMSE 14.69 8.70 8.63 10.46

Median Error -2.81 0.01 -0.00 -0.90
Non-Tradeable SDF Mean Error -1.93 1.25 1.29 0.04

RMSE 18.76 10.91 10.81 14.75

Median Error 5.02 2.57 2.66 0.74
MA(2) Meas.Error SDF Mean Error 10.67 4.60 4.64 0.90

RMSE 42.25 14.63 14.58 24.20

Panel B. True NPV is 0, Realistic sample: 30 vintages, sparse as venture

Raw Feasible Bootstrap Excess

NPV et(θ) MA(1) et(θ) MA(4) NPV

(1) (2) (3) (4)

Median Error -4.11 -0.77 -0.74 -0.64
Tradeable SDF Mean Error -2.36 0.64 0.67 0.40

RMSE 21.38 10.43 10.37 13.33

Median Error -3.37 0.12 0.11 -0.62
Non-Tradeable SDF Mean Error -2.47 1.90 1.93 0.97

RMSE 24.21 12.67 12.56 17.67

Median Error 2.20 2.61 2.67 0.68
MA(2) Meas.Error SDF Mean Error 10.05 5.65 5.68 2.36

RMSE 68.60 24.99 24.49 30.76

Panel C. True NPV is 19 cents, Realistic sample: 30 vintages, sparse as venture

Raw Feasible Bootstrap Excess

NPV et(θ) MA(1) et(θ) MA(4) NPV

(1) (2) (3) (4)

Median Error -4.88 -2.55 -2.67 -2.13
Tradeable SDF Mean Error -2.62 -0.80 -0.92 0.13

RMSE 26.72 14.59 14.51 17.56

Median Error -3.95 -2.47 -2.51 -1.57
Non-Tradeable SDF Mean Error -2.74 0.50 0.39 0.70

RMSE 30.24 18.34 18.21 22.31

Median Error 2.72 0.34 0.29 0.90
MA(2) Meas.Error SDF Mean Error 12.85 5.11 4.99 5.16

RMSE 88.38 38.35 37.70 46.49
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Table AII

Simulation Evidence�SDF parameter identi�cation: θB versus θCB
This tables illustrates PROPOSITION 2 by reporting summary statistics for the SDF slope parameter esti-
mation error across 5,000 independent simulations. In each simulation, the error is de�ned as the di�erence
between estimated γ and the true value (equal to 2.0) multiplied by 100. Each panel reports median, mean
and mean squared root error for three SDF types ('Tradeable','Non-Treadeable','Autoregressive') and four
estimators�one is based on time-series GMM of benchmark returns (equation 12, θB), and three are based
on cash �ows (equation 18, θCB) constructed from benchmark returns. θCB estimates depend on the map-
ping function (equation 16) with (δit) representing the true percentage of capital distributed and (δ̃it) being
the capital distributed assumed in the estimation. The seed values are �xed across and within panels.
Appendix.A2 describes the simulation setup and discusses results.

Panel A. Very large sample: 500 balanced vintage years

θB θCB

zt = 1 δ̃it =δit∝Rit δ̃it =Rit|δit>0 K-N δ̃it

(1) (2) (3) (4)

Median Error -0.28 3.96 4.55 3.10
Tradeable SDF Mean Error 0.28 6.80 8.15 4.20

RMSE 30.34 40.75 42.82 36.34

Median Error 0.59 3.32 3.96 2.73
Non-Tradeable SDF Mean Error 0.48 7.49 8.98 5.01

RMSE 36.29 48.36 51.01 43.77

Median Error -0.22 -15.83 -16.50 -10.78
Autoregressive SDF Mean Error 0.30 -13.49 -13.76 -9.48

RMSE 30.34 35.35 36.10 34.20

Panel B. Large sample: 50 balanced vintage years

θB θCB

zt = 1 δ̃it =δit∝Rit δ̃it =Rit|δit>0 K-N δ̃it

(1) (2) (3) (4)

Median Error 1.62 47.97 59.51 28.77
Tradeable SDF Mean Error 1.60 91.93 113.46 48.10

RMSE 97.56 237.10 273.70 161.91

Median Error 3.27 45.91 53.72 31.57
Non-Tradeable SDF Mean Error 3.81 106.37 134.15 65.99

RMSE 117.88 306.44 368.69 227.89

Median Error 1.80 20.67 26.80 20.09
Autoregressive SDF Mean Error 1.74 58.68 69.21 41.38

RMSE 97.69 192.69 209.55 154.04

Panel C. Realistic sample: 30 vintage years, sparse as venture

θB θCB

zt = 1 δ̃it =δit∝Rit δ̃it =Rit|δit>0 K-N δ̃it

(1) (2) (3) (4)

Median Error 0.63 88.87 103.34 55.03
Tradeable SDF Mean Error 6.10 147.84 187.43 75.17

RMSE 107.48 338.80 419.71 214.31

Median Error 3.68 78.82 90.06 56.45
Non-Tradeable SDF Mean Error 5.68 150.67 202.80 92.84

RMSE 129.08 821.74 629.40 295.12

Median Error 1.08 54.64 60.72 47.04
Autoregressive SDF Mean Error 6.26 106.19 125.68 69.94

RMSE 107.72 278.58 319.48 204.86
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Table AIII

Simulation Evidence�NPV inferences: θB versus θCB
This tables illustrates PROPOSITION 3 by reporting summary statistics for excess NPV estimation er-
ror across 5,000 independent simulations. In each simulation, the error is de�ned as a di�erence in
cents per dollar of capital committed between the estimate and the true life-time fund NPV (set to zero
across all panels). Each panel reports median, mean and mean squared root error for three SDF types
'Tradeable','Non-Treadeable' (so that benchmarks do not contain SDF itself), and 'Autoregressive' (so that
true SDF exibits time series persistence). In columns (1) and (2), SDF parameters are estimated using overi-
denti�ed time series GMM (equation 12, θB). In columns (3) and (4), the SDF parameters are estimated
using cash �ow based restriction instead (equation 18, θCB). Columns (1) and (3) [(2) and (4)] report excess
NPV relatively to the risky [risk free] benchmark. The seed values are �xed across and within panels. In
panel A, the mapping function (equation 16) assumed for estimation is set to match the true proportion of
capital distributed, while in panel B [C] it is set to be [approximately] as in Korteweg and Nagel (2016).
Appendix.A2 describes the simulation setup and discusses results.

Panel A. True δit
θB θCB

∆NPV b ∆NPV rf ∆NPV b ∆NPV rf

(1) (2) (3) (4)

Median Error -1.00 4.88 -0.91 -0.72
Tradeable SDF Mean Error -0.01 3.54 0.09 0.32

RMSE 12.57 18.19 12.59 13.79

Median Error -0.06 4.53 0.18 1.61
Non-Tradeable SDF Mean Error 0.52 4.01 1.47 3.26

RMSE 17.55 20.18 17.02 19.72

Median Error -1.10 3.69 -0.91 -0.69
Autoregressive SDF Mean Error -0.05 1.67 0.09 0.36

RMSE 14.71 22.24 12.65 13.85

Panel B. Korteweg-Nagel δ̃it
θB θCB

∆NPV b ∆NPV rf ∆NPV b ∆NPV rf

(1) (2) (3) (4)

Median Error -0.91 4.32 1.29 1.84
Tradeable SDF Mean Error 0.34 3.19 2.65 3.24

RMSE 12.79 17.79 13.90 14.77

Median Error -0.57 4.02 1.51 3.45
Non-Tradeable SDF Mean Error 0.64 3.64 2.75 4.94

RMSE 17.08 19.87 17.45 18.40

Median Error -0.92 3.91 1.09 1.91
Autoregressive SDF Mean Error 0.47 2.04 2.54 3.38

RMSE 15.03 22.27 14.21 15.15

Panel C. Simpli�ed Korteweg-Nagel δ̃it
θB θCB

∆NPV b ∆NPV rf ∆NPV b ∆NPV rf

(1) (2) (3) (4)

Median Error -0.84 5.50 -1.35 -1.01
Tradeable SDF Mean Error -0.08 3.83 1.25 1.61

RMSE 12.61 18.88 20.25 21.03

Median Error 0.31 5.43 1.08 2.87
Non-Tradeable SDF Mean Error 0.45 4.33 7.77 9.95

RMSE 17.93 20.81 36.30 37.67

Median Error -1.08 4.04 -1.61 -1.21
Autoregressive SDF Mean Error -0.37 1.57 0.62 0.97

RMSE 14.82 23.29 18.13 19.05
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Figure AI. Simulation Evidence�the low RMSE puzzle under θCB

This �gure plots estimates across 5,000 simulations corresponding to those reported Table AIII (Panel A,
line 'Autoregressive SDF'). In these simulations, θCB results in a lower RMSE of ∆NPV b relative to that
under θB despite the latter is a more e�cient and consistent estimates of SDF parameters. Both panels of
the �gure report intercept estimates on x-axis while panel A [B] reports the estimates of γ [excess NPV].
The blue dotted lines are the true values of each parameter. Appendix.A2 describes the simulation setup
and discusses results.

Panel A: SDF Parameter estimates

Panel B: SDF Parameters versus NPV estimates
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Appendix A3. Handling unresolved funds

As shown in section II.A, a signi�cant fraction of PE fund assets remain unresolved as of the forth
quarter of 2018, even after 10 years in operation. The usual approach in the literature (and amongst
practitioners) has been to consider the last most NAV reported as the terminal distribution (see,
e.g., Harris, Jenkinson, and Kaplan, 2014, for discussion). Formally, this implies to the following
assumption, where L(i) is the quarter of the last-most available NAV report for fund i:

E
[ T∑
τ=0

Ci,τ ·Ms(i):τ

]
= E

[ L(i)∑
τ=0

Ci,τ ·Ms(i):τ

]
+ E

[
NAVL(i) ·Ms(i):L(i)

]
, (A.8)

which, in turn, implies that:

E
[ T∑
τ=L(i)+1

δiτRiτML(i):τ ·
τ∏

t=L(i)+1

(
Rt(1− δit)

)]
≈ 1 (Res NAV Asmp1)

E
[
NAVL(i)

]
⊥⊥ E

[ T∑
τ=L(i)+1

δiτRiτML(i):τ ·
τ∏

t=L(i)+1

(
Rt(1− δit)

)]
(Res NAV Asmp2)

as it follows by plugging the cash �ow-to-return mapping equation (16) into E
[∑T

τ=L(i)Ci,τ ·ML(i):τ

]
and replacing −Ci0 and s(i) with, respectively, NAVL(i) and L(i).

The �rst assumptions seems plausible for SDFs that are inversely proportional to the traded
benchmark return (i.e. Mt:t+τ ∝ exp{−

∑t+τ
j=t+1r

b
j}), such as implied with K-S PME, since the

variance of idiosyncratic return Rit/Rbt is likely to be moderate for mature funds. However it
appears much less plausible with CBAPM SDFs which, as evident from panel B of table II, exhibit
large variance of the pricing errors for those public benchmarks.

Meanwhile, the fact that L(i) happens to be 4Q'18 for almost all funds, makes the second
assumption especially particularly vulnerable since it has to also hold conditionally and the period,
as shown in �gure 2, is characterized by relatively low marginal utility levels, especially, as per the
habit model. If PE fund managers add value by timing the distributions than the second assumption
fails. Under this hypothesis, the reason venture funds are so much unresolved is precisely that
investors exhibit very low utility for payouts in year 2018.

Accordingly, we take two simple steps to mitigate the likely failure in both assumptions for our
context. First, we conduct analysis on a subsample of mostly resolved funds in addition to the full
sample. Second, for the funds that have in�ation adjusted NAVs of at least 25% of real distributions
of fund size as of 4Q, we assume the life of pseudo funds to be the maximum of the respective actual
fund life and 50 quarters (i.e., fund managers elected the optional life extension). This slows down
the distribution pace of the pseudo funds so that there is less discrepancy in the scale of 4Q'18
NAVs between actual and pseudo funds than as depicted in �gure 3, in which pseudo fund life has
a 40 quarter limit (as in K-N).

Appendix A4. Inference

For our estimate of θ, we construct the standard errors as follows. Given the estimate of θ, θ∗,
we calculate pricing errors for each test asset i at time t

ei,t(θ
∗) = Ri,tMt(θ

∗)− 1. (A.9)
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From this sample of pricing errors, we draw a new sample of pricing errors, eki,t using a block
bootstrap procedure with block length 4. We then form a new series of returns

Rki,t = (1 + eki,t)/Mt(θ
∗). (A.10)

θk is then the GMM estimator which minimizes the sample estimate of the pricing errors centered
at g(θ∗) and var

(
θ∗
)
is the sample estimate of the covariance matrix of the K bootstrap replications

of θk.
We can also measure the performance of our choice of SDF in pricing public market returns

using a J statistic when the dimension of g exceeds the dimension of θ. The J statistic is

J = g(θ∗)′ S−1 g(θ∗) , (A.11)

where S is the estimate of the covariance matrix of the moment conditions.
To perform inference on PE fund NPVs, we rely on a semiparametric bootstrap procedure that

takes advantage of the fact that PE cash �ows, and hence, NPV estimates do not a�ect estimates
of the SDF parameters. Speci�cally, for each bootstrap sample, we draw

θk ∼ N (θ∗, var
(
θ∗
)
). (A.12)

For each θk, we �rst check its permissibility relative to three criteria: (1) γ, the coe�cient of relative
risk aversion, must be positive; (2) the quarterly average log SDF must be less than 1.03 in each of
the periods 1980-1995, 1990-2005, and 2000-1015; and (3) the quarterly average Sharpe ratio must
exceed 0.10 in each of the periods 1980-1995, 1990-2005, and 2000-1015. These three criteria help
ensure that θk is economically plausible by requiring that investors be risk-averse, that the SDF
discounts rather than grows future cash �ows, and that θk does not imply a SDF that violates the
Hansen-Jagannathan bounds, respectively. Figure AII provides a visual example of the draws of θk

that would be excluded over the full sample 1980-2018. We can then obtain a bootstrap estimate
of the PE fund NPVs, NPV ∗(θk). Correspondingly, the bootstrap estimate of the standard error is
the standard deviation of the K bootstrap replications NPV ∗(θk). Our simulations suggest that,
as a nonlinear function of θ, the NPV estimate tends to have leptokurtotic sampling distribution,
and as such, we use the percentile method to identify the critical values for the hypothesis test.
Speci�cally, we �nd the upper α/2 and lower α/2 quantiles of the bootstrap estimates and reject
H0 if the bootstrap-adjusted NPV estimate falls outside this region.

Figure AII. Permissible Draws of θk

Black cross denote permissible combinations, red diamonds (blue circles) fail the risk-free rate (Sharpe-ratio) criteria.
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